COMUNI DI GAZZANIGA E VERTOVA

PROVINCIA DI BERGAMO

COMMITTENTE Amministrazione comunale di Gazzaniga (BG)

# PIANO DI RISCHIO IDROGEOLOGICO DELLA VALLE VERTOVA

RELAZIONE

Geol. Marco Maggi



Ing. Alberto Frassoni



Maggio 2023 Aggiornamento ottobre 2024

# INDICE

| 1.                                                  | PREMESSA                                                                                                                                                                                                                                                                                                                                                                 | 3                                      |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2.<br>2.1<br>2.2<br>2.3                             | INQUADRAMENTO GEOLOGICO<br>Assetto strutturale<br>Assetto stratigrafico<br>Geomorfologia                                                                                                                                                                                                                                                                                 | 4<br>4<br>6                            |
| 3.                                                  | CONOSCENZE PREGRESSE DEL QUADRO DEL DISSESTO                                                                                                                                                                                                                                                                                                                             | 11                                     |
| 4.<br>4.1<br>4.1.1<br>4.2<br>4.2.1                  | PROCEDURA DI VALUTAZIONE DELLA PERICOLOSITA' GEOLOGICA<br>Pericolosità delle aree di potenziale distacco - Metodo Buwal<br>Procedura<br>Pericolosità delle aree di potenziale transito - Plugin QPROTO<br>Parametri di input                                                                                                                                             | 21<br>21<br>21<br>26<br>28             |
| 5.                                                  | VALUTAZIONE DELLA PERICOLOSITA' DELLE AREE DI POTENZIALE DISTACCO                                                                                                                                                                                                                                                                                                        |                                        |
| 5.1                                                 | MASSI<br>Primo macrosettore                                                                                                                                                                                                                                                                                                                                              | 32<br>32                               |
| 5.2                                                 | Secondo macrosettore                                                                                                                                                                                                                                                                                                                                                     | 60                                     |
| 6.                                                  | VALUTAZIONE DELLA PERICOLOSITA' DELLE AREE DI POTENZIALE TRANSITO DEI MASSI                                                                                                                                                                                                                                                                                              | 86                                     |
| 7.<br>7.1<br>7.2<br>7.3                             | VALUTAZIONE DELLA PERICOLOSITA' COMPLESSIVA E DEL RISCHIO<br>Definizione della pericolosità<br>Valutazione del rischio<br>Considerazioni finali                                                                                                                                                                                                                          | 88<br>88<br>90<br>91                   |
| 8.                                                  | STIMA DI MASSIMA DEGLI INTERVENTI DI PROTEZIONE DAI FENOMENI DI CADUTA MASSI                                                                                                                                                                                                                                                                                             | 94                                     |
| 9.<br>9.1<br>9.1.1<br>9.1.2<br>9.1.3<br>9.2         | <ul> <li>AREE A MAGGIOR RISCHIO - INFORMAZIONE ED ALLERTAMENTO</li> <li>Informazioni da fornire ai frequentatori</li> <li>Proprietari di edifici e fondi</li> <li>Tecnici e società</li> <li>Turisti ed escursionisti - Cartellonistica</li> <li>Allertamento ed inibizione al transito</li> </ul>                                                                       | 95<br>95<br>96<br>96<br>96<br>97       |
| 10.<br>10.1<br>10.1<br>10.1<br>10.1<br>10.1<br>10.2 | ALLEGATO 1: ANALISI DELLA DINAMICA DI CADUTA MASSI         Criteri di calcolo utilizzati dal codice di calcolo RocFall         .1       Algoritmo di proiezione         .2       Algoritmo di scorrimento         .2.1       Scorrimento lungo il tratto discendente         .2.2       Scorrimento lungo un tratto in risalita         .1       Algoritmo di proiezione | 99<br>99<br>00<br>01<br>01<br>02<br>02 |
| 11.                                                 | ALLEGATO 2: BIBLIOGRAFIA1                                                                                                                                                                                                                                                                                                                                                | 50                                     |

#### **ALLEGATI CARTOGRAFICI**

| Tavola 1  | Corografia                                                                                    | Scala 1:5.000       |
|-----------|-----------------------------------------------------------------------------------------------|---------------------|
| Tavola 2  | Carta di inquadramento geologico e strutturale                                                | Scala 1:10.000      |
| Tavola 3  | Carta delle pendenze (in gradi)                                                               | Scala 1:5.000       |
| Tavola 4  | Carta dell'esposizione dei versanti                                                           | Scala 1:5.000       |
| Tavola 5  | Fenomeni di caduta massi: pericolosità delle aree di distacco secondo il metodo Buwal         | Scala 1:5.000       |
| Tavola 6  | Fenomeni di caduta massi: aree di distacco e di transito                                      | Scala 1:5.000       |
| Tavola 7  | Ulteriori fenomeni di distacco                                                                | Scala 1:5.000       |
| Tavola 8  | Carta della pericolosità                                                                      | Scala 1:5.000       |
| Tavola 9  | Carta della destinazione d'uso dei suoli agricoli e forestali (aggiornamento DUSAF 6.0, 2018) | Scala 1:5.000       |
| Tavola 10 | Carta del rischio idrogeologico                                                               | Scala 1:5.000       |
| Tavola 11 | Ubicazione di massima degli interventi proposti                                               | Scala 1:2.000       |
| Tavola 12 | Schemi di intervento                                                                          | Scala 1:200 / varie |
| Tavola 13 | Ubicazione cartellonistica di pericolo                                                        | Scala 1:5.000       |

 $\odot$ CC – BY – NC – SA

| Gestione dei diritti (Rights Management) |              |                                          |  |  |  |  |
|------------------------------------------|--------------|------------------------------------------|--|--|--|--|
| REVISIONE DATA OGGETTO                   |              |                                          |  |  |  |  |
| 00                                       | Maggio 2023  | Emissione                                |  |  |  |  |
| 01                                       | Giugno 2024  | Inserimento nuovo capitolo 9 e tavola 13 |  |  |  |  |
| 02                                       | Ottobre 2024 | Aggiornamento relazione                  |  |  |  |  |
| 02                                       |              |                                          |  |  |  |  |

03 Estratto da metadata standard ISO15836 / Dublin Core (http://creativecommons.org/licenses/by – nc – sa/3.0/)

Il presente documento è costituito da 150 pagine.

La responsabilità per l'utilizzo dei dati contenuti nel presente documento per qualsiasi altra finalità ricade esclusivamente sull'utilizzatore dei dati stessi.

#### 1. PREMESSA

Il presente documento, redatto su incarico dell'Amministrazione Comunale di Gazzaniga con sede in via Roma 35, descrive le attività svolte per la predisposizione del Piano di Rischio Idrogeologico relativamente al fondovalle e ad alcuni settori del versante idrografico destro e sinistro della Valle Vertova.

L'area in esame, ricadente nei territori comunali di Gazzaniga e Vertova, si estende per circa 2,7 km<sup>2</sup> per una lunghezza dell'ordine dei 3,5 km ed ampiezza variabili (si veda Figura 1).



Figura 1: Ubicazione su CTRL dell'area di studio.

La Tavola 1 presenta un inquadramento dell'area di studio.

## 2. INQUADRAMENTO GEOLOGICO

#### 2.1 ASSETTO STRUTTURALE

Le Alpi Orobie sono caratterizzate da uno stile deformativo definito "*thin skin tectonics*", tipico delle zone marginali delle catene prossime agli avampaese, in cui manca un'impronta metamorfica simile a quelle delle Alpi Centrali. Le strutture, di tipo fragile, sono rappresentate da faglie e sovrascorrimenti talora accompagnate da fasce di cataclasiti, mentre la presenza di miloniti in alcune zone del basamento cristallino testimonia una deformazione più duttile delle porzioni più profonde dello stesso.

L'assetto strutturale principale della catena è dato da *thrust* prevalentemente sud-vergenti, che dividono la catena in fasce disposte E–W. Procedendo da N verso S, le unità strutturali che costituiscono tali fasce sono le seguenti:

- Thrust orobici: compresi tra la Linea Insubrica e la Linea Orobica, sono costituiti dal basamento metamorfico ercinico, scagliato al suo interno ed accavallato sulle successioni di copertura permo-triassiche.
- Anticlinali orobiche: strutture anticlinaliche, con disposizione en énchelon destra, comprese tra la Linea Orobica e la Linea Valtorta–Valcanale; sono costituite dalle coperture permo–scitiche e dal sottostante basamento cristallino.
- Fascia mediana delle unità alloctone: edificio strutturale con immersione regionale verso S, formato da thrust con geometria "foreland dipping duplex"; le diverse unità sono costituite dalla successione triassica.
- Settore frontale: fascio di pieghe probabilmente associate a thrust sepolti ("fault propagation folding"), dislocate da strutture trascorrenti NE–SW; sono costituite prevalentemente dalle coperture giurassico–cretaciche.

L'area in esame si colloca nella "<u>Fascia mediana delle unità alloctone</u>". Queste formano un edificio alloctono, localmente caratterizzato dalla duplice o triplice ripetizione delle unità strutturali, accavallatesi tra loro lungo superfici di scorrimento prevalentemente inclinate verso sud ed impostate lungo gli orizzonti evaporitici e le carniole della Formazioni di San Giovanni Bianco e della Carniola di Bovegno. A grande scala, l'edificio che ne deriva può essere schematizzato come un insieme di embrici immergenti verso la pianura. L'immersione verso meridione, legata al basculamento prodotto a scala regionale dalla deformazione della fascia delle Anticlinali Orobiche, comporta l'emergenza del solo margine settentrionale delle unità alloctone in posizione inferiore. I fronti meridionali di tali unità sono infatti ricoperti dalle unità alloctone sovrastanti.

All'interno della "<u>Fascia mediana delle unità alloctone</u>" la Faglia di Clusone-Antea, una superficie di scollamento principale sviluppatasi lungo i livelli incompetenti della parte sommitale della Formazione di San Giovanni Bianco, funge da limite strutturale, separando la sequenza delle "*Unità strutturali intermedie*", costituite dalle formazioni che giungono sino al Carnico superiore, affioranti a settentrione, dalle "*Unità strutturali superiorl*", costituite dalle formazioni triassiche più recenti, affioranti a meridione.

La Val Vertova è incisa in una delle "*Unità strutturali superiorl*", denominata "<u>Uni-</u> <u>tà tettonica M. Alben – Pizzo Formico – San Pellegrino</u>" (Figura 2).



Figura 2: Schema strutturale del Foglio 097 "Clusone" della Carta geologica d'Italia in scala 1:50.000 (Jadoul ET ALII, 2012) con evidenziata l'area in esame (ellisse rossa).

Tale unità tettonica è quella più diffusa arealmente nelle "*Unità strutturali superiorl*", e nell'area in esame è costituita dalle formazioni che dal Carnico superiore – Norico inferiore/medio (Dolomia Principale) giungono sino all'inizio del Giurassico (Calcare di Sedrina). Essa è interessata da numerosi sistemi di faglie minori, riferibili a tre principali eventi deformativi, dei quali l'ultimo connesso alle spinte orientate in prevalenza da N verso S della fase compressiva alpina. In questa fase le strutture relative alle fasi precedenti, di tipo distensivo ed orientate prevalentemente N-S e NNW-SSE, vengono in parte riattivate come faglie trascorrenti, causando la formazione di geometrie complesse. Oltre a queste, la compressione alpina ha causato anche dislocazioni NNE-SSW per accomodare i movimenti di traslazione verso S dell'unità tettonica.

Tra le faglie secondarie che dislocano l'unità tettonica in questione, nell'area in esame quella più importante è la Linea del M. Cavlera (nota in alcuni lavori anche come *Faglia di Vertova*), che si sviluppa dalla parte bassa del versante destro della Val Vertova sino allo spartiacque vallivo tra Cima Cavlera e M. Cavlera, mettendo a contatto le successioni dolomitiche noriche (Dolomia Principale e Dolomie Zonate) affioranti a Ovest, con la successione terrigeno-carbonatica norico-retica (Argillite di Riva di Solto e Calcare di Zu) affioranti ad Est. Tale lineamento sembra esaurirsi a Sud, in corrispondenza del M. Cedrina. Esso rappresenta una importante soglia che controlla lo spessore delle unità retiche: ad Est di tale linea la successione norico-retica raggiunge uno spessore complessivo di circa 900 m, mentre ad Ovest (zona M. Poieto) è molto più ridotto. I dati disponibili non consentono di ricostruire se questa faglia abbia avuto un'attività durante il Retico o se la differenza di spessore della successione retica sia legata semplicemente alla presenza di un alto norico ed un adiacente bacino gradualmente riempiti dai sedimenti retici.

È da segnalare anche la Linea del M. Ceresola, una faglia inversa di direzione WNW-ESE, che attraversa il versante sud dell'omonimo rilievo. Questa faglia rappresenta la riattivazione, avvenuta in età alpina, di un lineamento del Triassico superiore che costituisce il limite nord del Bacino di Selvino, separando una successione di piattaforma interna (Dolomia Principale), a nord, da un potente deposito di brecce e megabrecce di pendio a sud (*"brecce sommitali della Dolomia Principale" Auct.*, attualmente riattribuite alle Dolomie Zonate). Tale assetto fa sì che il lato sud del M.Ceresola sia costituito da un versante isostrutturale inclinato (direzione di immersione circa SSW) verso la Val Vertova.

## 2.2 ASSETTO STRATIGRAFICO

L'assetto stratigrafico, unitamente a dati strutturali (faglie, giaciture della stratificazione) ed alcuni dei principali elementi geomorfologici (scarpate di frana, trincee di rilascio gravitativo, ecc.) è riportato nella Carta di inquadramento geologico di Tavola 02, ricavata dai rilievi originali (in scala 1:10.000) per la realizzazione del Foglio 097 Clusone della nuova Carta Geologica d'Italia in scala 1:50.000, integrati con sopralluoghi in sito e fotointerpretazione.

Il *substrato roccioso* è costituito dalle formazioni descritte di seguito, dalla più antica alla più recente.

Dolomia Principale (Carnico superiore - Norico inferiore/medio)

L'unità nell'area in esame è costituita da due associazioni di litofacies principali che, tra loro, presentano spesso rapporti eteropici.

Le litofacies tipiche, depostesi in un ambiente di piattaforma carbonatica interna, sono costituite da dolomie grigie, subtidali, in banchi sino a metrici, e dolomie in spessi cicli peritidali, localmente con brecciole intraformazionali alla base.

L'altra associazione di litofacies, depostasi nella zona di margine e pendio superiore, di raccordo tra piattaforma interna e bacino, è costituita da brecce e megabrecce massive, caotiche, di spessore da metrico a plurimetrico, con clasti eterometrici sia delle facies di piattaforma interna, che di Dolomie Zonate.

#### Dolomie Zonate (Norico medio)

Anche questa unità è costituita da due associazioni di litofacies, una stratificata e l'altra brecciata.

Le facies stratificate, tipiche, sono costituite da alternanze di calcareniti – calcisiltiti dolomitizzate grigio scure, in strati sino a pluridecimetrici piano – paralleli, con clasti millimetrici sia chiari che scuri, e con clasti pelitici. Le facies medio – grossolane possono presentare granoclassazione, laminazioni parallele, oblique, *ripple* di corrente e superfici erosive (torbiditi). Presentano anche intercalazioni di ritmiti grigio nerastre, di spessore centimetrico, caratterizzate da alternanze di laminazioni parallele chiare e scure (da cui il nome dell'unità), in cui possono essere presenti intercalazioni, sino a 10 cm di spessore, di marne dolomitiche scure finemente laminate, ossidi di ferro con colore di alterazione bruno – rossastro. Localmente sono presenti lenti di paraconglomerati.

Le facies a brecce prevalenti sono costituite da corpi lentiformi di brecce poligeniche, con clasti sia di Dolomia Principale, sia delle facies tipiche della stessa unità, spesso a supporto di matrice, in banchi amalgamati con base erosionale.

#### Calcare di Zorzino (Norico medio)

E' costituito in prevalenza da una successione monotona di calcari micritici neri, fetidi, in strati piano – paralleli di spessore da centimetrico a pluridecimetrico, con sottili intercalazioni di marne nere, più diffuse nella parte superiore dove si associano anche ritmiti millimetrico – centimetriche di calcari marnosi e calciluti-ti nere lastroidi, ricchi in sostanza organica e localmente fossiliferi.

#### Argillite di Riva di Solto (Norico superiore)

L'unità è caratterizzata da due litozone, non cartografabili separatamente nell'area in esame: l'inferiore è prevalentemente argilloso – marnosa, la superiore è costituita da alternanze argilliti – marne e calcilutiti nerastre.

La litozona inferiore è caratterizzata da argilliti e argilliti marnose nere, molto compattate, fogliettate, organizzate in banchi planari di spessore plurimetrico. Ad esse si intercalano orizzonti marnoso – calcarei, fetidi, a volte con laminazioni parallele, deformate (slumping), ritmiti e patina d'alterazione ocracea, in singoli strati decimetrici a superficie ondulata, spesso lenticolari, per compattazione.

La litozona superiore è caratterizzata da una evidente ciclicità delle litofacies (cicli in prevalenza asimmetrici di spessore sino a decametrico), evidenziata dalle intercalazioni di calcari marnosi e micritici. Ciascun ciclo è caratterizzato da una porzione inferiore argillitico – marnosa; una porzione mediana a contenuto di carbonato crescente, organizzata in strati decimetrici piano – paralleli e una superiore quasi completamente costituita da calcilutiti ben stratificate. Sul fondovalle, alla base dell'unità sono presenti alcuni orizzonti lenticolari con *slumping* che passano a brecce intraformazionali.

#### Calcare di Zu (Retico)

Anche questa unità è suddivisibile in diverse litozone (da due a quattro a seconda degli Autori), ma nell'area in esame è stata oggetto solo di una bipartizione (litozona inferiore e superiore).

La litozona inferiore è costituita da prevalenti calcari micritici grigio scuri, raramente bioclastici e calcarenitici, e calcari marnosi da grigi a nerastri, in strati decimetrici piano – paralleli o in banchi plurimetrici costituiti da strati amalgamati. A tali litofacies si associano intercalazioni, di spessore metrico, di marne e calcari marnosi localmente fossiliferi e, più raramente, argilliti marnose nerastre. La sommità della litozona inferiore è caratterizzata da un orizzonte pluridecametrico prevalentemente carbonatico costituito da intercalazioni di calcareniti grigie e grigio scure, bioclastiche, calcari fossiliferi e piccole biocostruzioni a coralli associate a calcilutiti bioturbate.

La litozona superiore è costituita da alternanze di marne grigio ocracee associate superiormente con calcari marnosi e poi da prevalenti calcari micritici e calcisiltiti, spesso con laminazioni parallele, ondulate ed oblique, e con brecciole intraformazionali. La sommità della litozona superiore ritorna prevalentemente calcarea e molto fossilifera, caratterizzata da calcari micritici con intercalazioni calcarenitiche grigie, oolitiche e/o bioclastiche, associate a calcari con coralli.

#### Formazione dell'Albenza (Hettangiano inferiore)

Le litofacies di questa unità, nota nella letteratura precedente come *Dolomia a Conchodon*, sono prevalentemente calcaree, localmente dolomitizzate, di colore grigio-nocciola, in strati e banchi amalgamati. Alla base prevalgono le calcareniti oolitiche con laminazioni oblique, in lenti con superfici erosionali e con noduli di selce nocciola, mentre superiormente si alternano prevalenti calcari nocciola fini, localmente laminati, con livelletti di brecciole intraformazionali e qualche interca-lazione di calcareniti fini.

#### Calcare di Sedrina (Hettangiano medio-superiore)

L'unità è costituita da calcari grigi e grigio-scuri in strati decimetrici con superfici di strato leggermente ondulate per la presenza di sottili giunti marnosi e stilolitici, prevalgono nettamente le calcilutiti con dispersi noduli di selce. Alla base è presente (Cima di Cavlera) un livello fossilifero con lamellibranchi silicizzati ed alla sommità intercalazioni di calcareniti ("Banco a Brachiopodi" *Auct.*).

### Filoni andesitici (Terziario)

Si tratta di filoni stratoconcordanti e discordanti, a composizione andesitica e spesso con struttura porfirica, generalmente molto alterati. La loro messa in posto probabilmente è successiva, o al massimo contemporanea, alla messa in posto delle principali unità tettoniche delle Prealpi bergamasche (fase Eo-alpina) e probabilmente precede di pochi milioni di anni l'intrusione dell'Adamello.

Relativamente ai *depositi superficiali*, la cartografia CARG li riferisce alle due seguenti unità.

#### Gruppo di Prato Grande (Pleistocene medio)

Si tratta di una nuova unità istituita nell'ambito del Progetto CARG, che raggruppa depositi di versante, macereti e depositi di frana non cementati, alterati dopo la sedimentazione, e localizzati all'interno delle valli.

#### Sintema del Po (Pleistocene superiore - Olocene)

Racchiude tutti i depositi (indipendentemente dall'agente deposizionale) formatisi posteriormente all'ultimo evento glaciale pleistocenico. Nell'area in esame è costituito da vari tipi di depositi: di versante, di frana (sia a matrice che a blocchi prevalenti), di debris-flow, alluvionali e colluviali.

## 2.3 GEOMORFOLOGIA

Per quanto concerne la geomorfologia, quella dell'area in esame è tipica delle aree montane non glacializzate, con versanti coperti da discontinue coltri di alterazione soggette a rimobilizzazione, ed è fortemente condizionata dall'assetto litologico-strutturale. La morfologia dei versanti è dovuta all'azione dei vari agenti morfogenetici attivi dall'emersione della catena ad oggi, ed in particolare all'azione delle acque di scorrimento superficiale e della gravità. Il modellamento è stato influenzato essenzialmente dalla diversa competenza dei litotipi affioranti e dal loro assetto stratigrafico-strutturale. I contrasti morfologici sono molto marcati, e sono dovuti non solo alla diversa natura dei litotipi ma anche alla loro giacitura ed alla presenza di strutture tettoniche che mettono a contatto litofacies con caratteristiche di resistenza molto differenti (ad esempio la Linea del M. Cavlera).

Nei settori dove affiorano litotipi esclusivamente carbonatici, in particolare quelli massivi, il paesaggio è decisamente aspro, con pareti anche strapiombanti, rocce talora anche diffusamente fratturate e numerose forme carsiche. Nei settori dove invece prevalgono le alternanze carbonatico-argilloso-marnose, più tenere, plastiche e maggiormente erodibili, le morfologie sono più dolci.

L'azione delle acque di scorrimento superficiale nelle litofacies più competenti ha portato all'incisione di profonde forre sia lungo l'asta valliva principale che lungo le sue tributarie laterali, molte delle quali hanno un andamento rettilineo poiché impostate lungo faglie o fratture notevolmente persistenti.

Anche la circolazione idrica sotterranea ha contribuito, seppur in maniera più limitata al modellamento del territorio, e ne sono testimonianza le forme carsiche (inghiottitoi, piccole doline e grotte) sviluppate nelle litofacies carbonatiche.

La gravità è un altro degli agenti morfogenetici che ha contribuito al modellamento del territorio in esame, e che tuttora riveste un ruolo significativo nella sua evoluzione morfologica locale. Le forme più tipiche connesse a tale azione sono le frane, e nel territorio in esame sono particolarmente diffuse le evidenze di dissesti antichi di varia dimensione sviluppatisi sia nel substrato roccioso che nei depositi di copertura. Di alcuni di tali dissesti è ben riconoscibile l'accumulo mentre la nicchia di distacco è stata rimodellata e non appare particolarmente evidente. Vi sono inoltre porzioni di versante con evidenze di collasso gravitativo, quali trincee di distensione e contropendenze, generalmente impostate lungo le principali direttrici di fratturazione o dislocazione della compagine rocciosa, che stanno ad indicare un assestamento verso il basso durante le varie fasi di approfondimento della valle.

Relativamente ai crolli in roccia, anche questi sono ampiamente diffusi ed interessano tuttora le pareti rocciose o le porzioni di versante molto acclivi. In prevalenza si tratta di fenomeni di caduta di singoli massi che, tuttavia, possono avere dimensioni ciclopiche, come testimoniato da vari blocchi che occupano l'alveo del Torrente Vertova nel tratto inforrato.

Per quanto riguarda i depositi di copertura, le frane sono localizzate sui pendii più ripidi. Prevalentemente si tratta di fenomeni di tipo *soil – slip*, di piccole dimensioni, in cui svolge un ruolo fondamentale la presenza di acqua. Essi si innescano o riattivano in concomitanza sia di forti piogge, sia di precipitazioni non partico-larmente intense ma perduranti, sia nel periodo del disgelo.

Altre forme legate alla gravità riconosciute sono le falde detritiche, sia quelle molto antiche e cementate, che formano piastroni clinostratificati, sia quelle formatesi più recentemente (periodo post – glaciale), sciolte e solo in parte pedogenizzate e colonizzate dalla vegetazione.

#### 3. CONOSCENZE PREGRESSE DEL QUADRO DEL DISSESTO

Nella letteratura scientifica non vi sono pubblicazioni specifiche su dissesti avvenuti in Val Vertova in passato, ma alcune informazioni si ricavano dagli studi e dalle monografie dedicati agli eventi alluvionali nell'Italia Settentrionale, ed in particolare da "*I dissesti prodotti dal nubifragio del 10 luglio 1972 nella bassa Val Seriana*" (GOVI M & MORTARA G., Boll. Ass. Min. Subalpina, Anno XVIII, n.1-2, 1981). In tale studio è allegata una carta, ricavata da rilievi sul terreno con il supporto di immagini aerofotografiche, che comprende la parte bassa della Val Vertova e riporta un numero molto elevato di dissesti avvenuti a seguito dell'evento alluvionale (Figura 3).

![](_page_11_Figure_2.jpeg)

Figura 3: "Stralcio della Carta dei dissesti prodotti dall'evento del 10 luglio 1972" e relativa legenda (GOVI M & MORTARA G., 1981)

Dalla descrizione riportata si evince che i dissesti avevano dimensioni limitate e si innescarono quasi esclusivamente nei terreni sciolti della copertura eluviale, detritica e colluviale, coinvolgendone uno spessore modesto. Dalla carta la tipologia di dissesto più diffusa fu quella delle frane superficiali per colamento rapido di terra (*earth flow, soil slip-mud flow, soil slip-debris flow*), seguite da scoscendimenti di terra spesso con evoluzione in colamenti (*slump-earth flow, earth slump*) e dall'apertura di fenditure nel terreno. In sinistra idrografica lungo alcuni corsi d'acqua si innescarono fenomeni erosivi che alimentarono notevolmente il tra-sporto solido.

Un quadro generale sulla presenza e distribuzione dei dissesti è dato dal Progetto IFFI (Inventario dei Fenomeni Franosi in Italia) nel quale sono stati integrati i dati e gli studi raccolti da Regione Lombardia a partire dal 1998 (un prototipo di inventario iniziò ad essere utilizzato un decennio prima, a seguito dell'alluvione del luglio-agosto 1987) (Figura 4).

![](_page_12_Figure_2.jpeg)

Figura 4: Carta ricavata dalla versione più aggiornata dell'Inventario delle Frane e dei dissesti idrogeologici regionale con relativa legenda. Il poligono in nero definisce l'area oggetto del presente studio.

Secondo la versione più aggiornata del sistema informativo denominata GeoIFFI

rappresentata in Figura 4, nell'area in esame sono individuate arealmente:

- aree soggette a crolli/ribaltamenti diffusi
- frane per crollo/ribaltamento
- frane per scivolamento rotazionale/traslativo
- frane per colamento "rapido".

Dove possibile entro le frane sono state distinte le aree di nicchia di distacco da quelle di accumulo.

Linearmente, invece, vengono individuate varie aste torrentizie potenzialmente interessate da fenomeni di colamento "rapido" (tipo *debris-flow* o *debris-torrent*). Infine vengono perimetrati i conoidi-detritico alluvionali.

Per ogni singola situazione di dissesto viene fornita una valutazione sullo stato di attività secondo il seguente schema:

- attivo: fenomeno attualmente in movimento;
- sospeso: fenomeno che si è mosso entro l'ultimo ciclo stagionale, ma che attualmente non si muove;
- riattivato: movimento di nuovo attivo dopo essere stato inattivo;
- quiescente: frana inattiva che può essere riattivata dalle sue cause originali, è un fenomeno per il quale permangono le cause del movimento;
- naturalmente stabilizzato: frana inattiva che non è più influenzata dalle sue cause originali; infatti le cause del movimento sono state naturalmente rimosse;
- artificialmente stabilizzato: frana inattiva che è stata protetta dalle sue cause originali da misure di stabilizzazione;
- relitto (paleofrana): frana inattiva che si è sviluppata in condizioni geomorfologiche o climatiche considerevolmente diverse dalle attuali. Le frane relitte sono inattive ma, comunque, possono essere riattivate parzialmente o totalmente;
- non determinato: quando non si dispone di informazioni sullo stato di attività.

Alcuni dissesti, ed in particolare tutte le "*aree soggette a crolli/ribaltamenti diffusl*" riportano uno stato di attività "*attivo/riattivato/sospeso*", in quanto si tratta di fenomeni che possono verificarsi con una certa continuità o frequenza su porzioni diverse dell'area franosa, in particolare se questa è molto ampia (si pensi ad esempio ad una grande parete rocciosa soggetta a distacchi di blocchi).

Rispetto alla versione iniziale dell'Inventario delle Frane e dei dissesti idrogeologici regionale, disponibile dal 2002, lo stato di attività di alcuni dissesti, ed in particolare di quello delle "*frane per scivolamento rotazionale/traslativo*" è stato modificato, ma in alcuni casi si ritiene che tale variazione non sia corretta. Ad esempio, a tutte le frane classificate originariamente come "*relitte*" (ovvero paleofrane), è stato riattribuito uno stato di attività "quiescente", sia nella porzione di nicchia di distacco che in quella di accumulo, ma ciò non è coerente con l'effettiva situazione che si riscontra sul terreno (Figura 5).

![](_page_14_Figure_1.jpeg)

Figura 5: Stralcio dell'Inventario delle Frane e dei dissesti idrogeologici regionale del 2002 con relativa legenda. Su entrambi i versanti vallivi sono riportate "*frane per scivolamento rotazionale/traslativo*" con stato di attività "relitto", mentre nella versione più recente (Figura 4) sono state riclassificate con stato di attività "*quiescente*".

Parte dei dissesti riportati nel GeoIFFI sono stati inseriti dagli estensori della componente geologica a supporto del PGT nel PAI.

Per quanto riguarda la porzione valliva che ricade nel territorio comunale di Gazzaniga la trasposizione dei dissesti inseriti nell'Inventario regionale è stata pressoché totale, mentre per la parte che ricade nel territorio comunale di Vertova nel PAI è stato inserito un numero limitato dei dissesti presenti nell'inventario, alcuni con evidenti riperimetrazioni, ed in particolare sono state quasi del tutto omesse le "aree soggette a crolli/ribaltamenti diffusi" (Figura 6).

14

![](_page_15_Picture_0.jpeg)

Figura 6: Ortofoto con riportati i dissesti inseriti nel PAI vigente (Fonte: Geoportale Regione Lombardia).

Per quanto riguarda lo stato di attività, alle aree perimetrate PAI che ricadono nel territorio comunale di Gazzaniga è stato attribuito lo stesso grado riportato nella versione iniziale dell'Inventario delle Frane e dei dissesti idrogeologici regionale (le "*aree soggette a crolli/ribaltamenti diffusl*" sono state inserite come "Aree di frana attiva - Fa). Per quelle poste nel territorio comunale di Vertova è stata effettuata una nuova attribuzione del grado di attività, più simile a quella della versione aggiornata del GeoIFFI.

Le segnalazioni dei dissesti più recenti, fornite dalle Amministrazioni comunali, riguardano:

 una caduta di massi in località Piazzoli (versante idrografico destro, in comune di Gazzaniga), avvenuta nel luglio 2014 e che ha comportato la chiusura cautelativa della strada agro-silvo-pastorale per la Valle di Grü ed il divieto di residenza, anche temporanea, in alcuni fabbricati; successivamente, poco a valle della zona di distacco dei blocchi (Foto 1), è stata installata una barriera paramassi di 30 m di lunghezza (Foto 2);

![](_page_16_Picture_1.jpeg)

Foto 1: Vista da valle della zona dove nel luglio 2014 è avvenuto il distacco di blocchi.

![](_page_16_Picture_3.jpeg)

Foto 2: Vista da monte della barriera paramassi installata poco a valle della zona del distacco massi avvenuto nel 2014.

- un dissesto che ha interessato il ciglio e la scarpata di valle della sede stradale che conduce in Val di Grü, in località Clacchei (versante idrografico destro, in comune di Gazzaniga), avvenuto nel 2019 (Foto 3); tale dissesto ha interessato materiale sciolto già smosso (porzione superficiale del corpo di una frana più ampia) lungo un pendio molto acclive (43°÷45°).
- la caduta di un masso lungo la pista di servizio alle sorgenti Go-Merlezza e Borleda (fondovalle, sponda destra, comune di Gazzaniga), avvenuta nel luglio 2019; il distacco ha interessato un tratto di fondovalle già interessato nel passato da caduta massi.
- una caduta di massi sul pendio soprastante Tribulina Zatel (versante idrografico destro, in comune di Gazzaniga), avvenuta nel 2021; uno dei blocchi crollati, di circa 0.5 m<sup>3</sup> di volume, si è arrestato lungo un sentiero ad un centinaio di metri da una baita, mentre altri frammenti di dimensioni minori hanno proseguito la loro discesa lungo il versante, dove si sono arrestati contro la vegetazione di alto fusto (Foto 4).

Durante l'esecuzione dei sopralluoghi in sito è stata inoltre rilevata la presenza di un altro dissesto che ha interessato il ciglio e la scarpata di valle della sede stradale che conduce in Val di Grü, poche decine di metri a valle di quello avvenuto nel 2019. In questo caso si tratta di uno scivolamento che ha interessato anche il substrato roccioso, costituito dalle litofacies dell'Argillite di Riva di Solto (Foto 5).

![](_page_17_Picture_4.jpeg)

Foto 3: Nicchia di distacco del dissesto che nel 2019 ha interessato la scarpata di valle della sede stradale che conduce in Val di Grü.

![](_page_18_Picture_0.jpeg)

Foto 4: Blocco di circa 0.5 m<sup>3</sup> caduto nel 2021 ed arrestatosi su un sentiero.

![](_page_18_Picture_2.jpeg)

Foto 5: Vista sul dissesto più recente che ha interessato la scarpata di valle della sede stradale che conduce in Val di Grü, a poche decine di metri di distanza da quello avvenuto nel 2019.

Attualmente su entrambi i tratti in dissesto sono stati eseguiti degli interventi per garantire la stabilità del ciglio stradale, ma le sottostanti scarpate di frana sono da considerare ancora attive in quanto lungo le stesse può mobilizzarsi ulteriore materiale. Il materiale franato a seguito del dissesto più recente ha ostruito l'alveo del corso d'acqua sottostante e ha innescato una colata detritica che ha

raggiunto il fondovalle principale (Foto 6). Nel tratto terminale dell'incisione valliva l'alveo è stato ripulito ed il materiale è stato addossato lungo la sponda sinistra per realizzare una sorta di protezione (argine) nei confronti di una costruzione posta sul conoide del corso d'acqua (Foto 7).

![](_page_19_Picture_1.jpeg)

Foto 6: Vista sul conoide dell'incisione valliva sottostante i dissesti che hanno interessato la scarpata di valle della strada che conduce in Val di Grü. Si nota l'alveo ingombro di materiale grossolano trasportato a valle sotto forma di colata detritica.

![](_page_19_Picture_3.jpeg)

Foto 7: Vista da monte del tratto terminale dell'incisione valliva sottostante i dissesti che hanno interessato la scarpata di valle della strada che conduce in Val di Grü. Si nota il materiale tolto dall'alveo ed addossato in sinistra per realizzare una protezione spondale.

Relativamente alla pericolosità idraulica, si riporta un estratto della mappa del Piano di Gestione dei Rischi di Alluvioni (Direttiva Alluvioni/2007/60/CE) (Figura 7).

![](_page_20_Figure_1.jpeg)

Figura 7: Estratto della mappa di pericolosità del Piano di Gestione dei Rischi di Alluvioni (Fonte: (Geoportale Regione Lombardia).

Lungo l'asta principale della Val Vertova (a parte il tratto terminale) non sono riportate perimetrazioni, mentre lungo alcune sue tributarie sinistre (tra queste la Val Sterladeno) sono individuate "Aree allagabili per uno scenario di piena frequente H (TR: 20÷50 anni)" (colore blu scuro in Figura 7).

Inoltre, il conoide formato dalle valli Masna e degli Uccelli alla loro confluenza nel Torrente Vertova è inserito nelle "Aree allagabili per uno scenario di piena poco frequente M (TR: 100÷200 anni)" (colore blu in Figura 7).

20

## 4. PROCEDURA DI VALUTAZIONE DELLA PERICOLOSITA' GEOLOGICA

La procedura adottata nel presente lavoro si è articolata nelle fasi seguenti fasi fondamentali:

- 1. valutazione della pericolosità da frana (crollo e caduta massi) nelle aree di potenziale distacco attraverso il metodo Buwal;
- valutazione della pericolosità nelle aree interessate dalle traiettorie di transito e caduta attraverso l'impiego del Plugin QPROTO (QGIS Predictive ROckfall Tool, Castelli et al. 2019), realizzato per il software open source QGIS 3.4;
- valutazione della pericolosità per altre tipologie di fenomeni presenti nell'area (frane, conoidi) sulla base dei criteri previsti da Regione Lombardia (d.g.r. n. IX/2616 del 30 novembre 2011 e smi);
- 4. valutazione finale del rischio.

È opportuno rimarcare che, mentre la Pericolosità è legata alla presenza di un fenomeno franoso di una certa intensità e con una certa probabilità di riattivazione del movimento, il rischio sussiste unicamente qualora nelle aree pericolose siano presenti elementi esposti: la sua entità deriva quindi dal grado di pericolosità e dal valore del bene esposto. Ne consegue la necessità di mantenere distinte le caratteristiche del fenomeno franoso (tipologia, magnitudo, frequenza probabile) dagli elementi a rischio (cui si associano le specifiche di vulnerabilità e valore economico). Il risultato finale sarà quello di una cartografia della pericolosità associata ad un "censimento" degli elementi a rischio.

#### 4.1 PERICOLOSITÀ DELLE AREE DI POTENZIALE DISTACCO - METODO BUWAL

#### 4.1.1Procedura

La procedura di valutazione della pericolosità da frana che è stata applicata è basata sul cosiddetto "*metodo svizzero*", predisposto dall'*Ufficio federale dell'ambiente, delle foreste e del paesaggio* (BUWAL, 1998÷1999) della Confederazione Elvetica.

Tale metodologia, opportunamente modificata al fine di adeguare le classi di frequenza probabile a quelle previste dalla normativa italiana vigente in tema di valutazione del rischio idrogeologico (corrispondenza nella definizione delle classi di rischio fra metodo svizzero e il D.P.C.M. 29.09.1998 "Atto di indirizzo e coordinamento per l'individuazione dei criteri relativi agli adempimenti di cui all'art. 1, commi 1 e 2, del D.L. 11 giugno 1998, n. 180"), è stata già utilizzata da vari enti per la redazione di Piani delle zone di pericolo e Piani stralcio per il rischio idrogeologico (tra questi l'Autorità di Bacino del Fiume Adige, l'Autorità di Bacino dei Fiumi Isonzo, Tagliamento, Livenza, Piave, Brenta-Bacchiglione, l'Autorità di Bacino Alto Adriatico, la Provincia Autonoma di Bolzano, il CNR IRPI di Padova).

Il metodo si articola nei seguenti punti:

- 1. Individuazione e perimetrazione delle aree di frana e delle aree limitrofe che potenzialmente potrebbero essere coinvolte in una riattivazione del fenomeno;
- Definizione delle caratteristiche del movimento (tipologia, velocità, volumi e/o spessori);
- 3. Stima della frequenza probabile del fenomeno;
- 4. Applicazione di matrici ad incrocio dei dati (velocità/frequenza probabile e magnitudo/ frequenza probabile) ed assegnazione del livello di Pericolosità.

Si tratta di una procedura di valutazione della pericolosità di tipo geomorfologico, per la quale sono insiti alcuni caratteri di soggettività propri del metodo, soprattutto per quanto riguarda l'assegnazione dei valori d'ingresso. Il risultato finale porta alla redazione di una carta dei fenomeni franosi, alla cui perimetrazione viene associato uno specifico livello di pericolosità.

Operativamente, per poter definire la pericolosità di un'area è necessario rilevare o stimare i seguenti parametri:

**Intervalli di velocità**, si perviene al valore attraverso la stima della velocità massima che il corpo di frana può raggiungere durante lo spostamento. Gli intervalli sono individuati in funzione della possibilità di attivare delle contromisure (ad esempio l'allertamento della popolazione) e in funzione dei possibili danni attesi agli edifici e alle strutture. Nella Tabella 1 sono definiti tre intervalli di velocità, raggruppando le classi di velocità definite nel 1996 da Cruden & Varnes. Al valore limite di velocità di 3 m/min è attribuita un'importanza fondamentale, perché rappresenta generalmente il limite di velocità al di sopra del quale non è possibile l'allertamento delle persone e l'evacuazione delle abitazioni e pertanto è posta seriamente a rischio l'incolumità delle medesime. I crolli (distacchi improvvisi di materiali di qualsiasi dimensione, con spostamento in caduta libera su una parte della traiettoria, e il successivo movimento a salti, rimbalzi e rotolamento lungo il versante) sono fenomeni franosi da estremamente rapidi a molto rapidi ed agli stessi è sempre attribuito un Intervallo di velocità 3.

| Classi             |                                        |          |  |  |
|--------------------|----------------------------------------|----------|--|--|
| (definizione da C  | (definizione da Cruden & Varnes, 1996) |          |  |  |
| Descrizione        | Descrizione Velocità tipica            |          |  |  |
| Estremamene rapida | 5 m/sec                                | 2        |  |  |
| Molto rapida       | 3 m/min                                | 5        |  |  |
| Rapida             | 1,8 m/hr                               |          |  |  |
| Moderata           | 13 m/mese                              | 2        |  |  |
| Lenta              | 1,6 m/anno                             | <b>_</b> |  |  |
| Molto lenta        | 16 mm/anno                             |          |  |  |
| Estremamente lenta | < 16 mm/anno                           | 1        |  |  |

Tabella 1: Stima degli intervalli di velocità dei fenomeni franosi, individuati in funzione della possibilià di allertare la popolazione e dei possibili danni attesi agli edifici e alle strutture.

**Intervalli di severità geometrica**, questo parametro tipicamente rilevabile durante l'attività di campagna, si basa sulle classi dimensionali del fenomeno frano-

22

so definite da Heinimann nel 1998. Nella Tabella 2 vengono definiti tre intervalli di severità geometrica riferibili ai diversi fenomeni franosi. Rispetto alla formulazione originaria nelle applicazioni effettuate in Italia sono state introdotte delle modifiche per quanto riguarda la classificazione delle colate detritiche o in generale dei colamenti rapidi, in quanto le condizioni di massima pericolosità secondo la letteratura scientifica si manifestano già con altezze di flusso di circa un metro.

| Classi di severità<br>geometrica per i<br>fenomeni di crollo<br>(definizione da<br>Heinimann et al., 1998) | Classi di severità<br>geometrica per i fenomeni<br>di scorrimento e colata<br>lenta<br>(definizione da Heinimann<br>et al., 1998) | Classi di severità<br>geometrica per i<br>fenomeni di colata<br>rapida<br>(Profondità della<br>corrente o del<br>deflusso solido) | Intervalli di<br>severità<br>geometrica |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Diametro dei blocchi                                                                                       | Spessore                                                                                                                          | Profondità                                                                                                                        | 3                                       |
| > 2 m                                                                                                      | > 15 m                                                                                                                            | > 1 m                                                                                                                             | 3                                       |
| Diametro dei blocchi                                                                                       | Spessore                                                                                                                          | Profondità                                                                                                                        | 2                                       |
| 0,5 – 2 m                                                                                                  | 2 – 15 m                                                                                                                          | 0,5 – 1 m                                                                                                                         | 2                                       |
| Diametro dei blocchi                                                                                       | Spessore                                                                                                                          | Profondità                                                                                                                        | 4                                       |
| < 0,5 m                                                                                                    | < 2 m                                                                                                                             | ≤ 0,5 m                                                                                                                           |                                         |

Tabella 2: Stima delle classi di severità geometrica dei fenomeni franosi.

**Frequenza probabile**, questo parametro è legato allo stato di attività del fenomeno franoso e alle cause che ne determinano l'innesco. In mancanza di dati storici sufficienti ad analizzare i tempi di ritorno in modo statistico, i valori di frequenza probabile sono attribuiti adottando un approccio fondamentalmente tipologico, basato su dati di letteratura inerenti le caratteristiche di ricorrenza temporale delle diverse tipologie di frane e calibrato su osservazioni geomorfologiche, sull'analisi delle ortofoto realizzate dal 1954 al 2015 (*Evoluzione temporale delle ortofoto* è un applicativo disponibile sul Geoportale regionale). Nella Tabella 3, in accordo con la normativa di riferimento, vengono definiti quattro intervalli di frequenza probabile. La classe 1-30 anni identifica aree frequentemente soggette a fenomeni di dissesto; la classe 30-100 anni rappresenta quei fenomeni a ricorrenza storica; la classe 100-300 anni identifica invece fenomeni a bassa ricorrenza ma documentati storicamente, ed infine la classe con tempi superiori ai 300 anni include i fenomeni antichi, per lo più stabilizzati naturalmente, ad oggi difficilmente riattivabili (paleofrane).

| Stato di attività                               | Frequenza probabile |
|-------------------------------------------------|---------------------|
| frane attive, continue e/o intermittenti        | 1 20 oppi           |
| frane quiescenti – episodiche ad alta frequenza | 1 – 30 ann          |
| frane quiescenti – episodiche a media frequenza | 30 – 100 anni       |
| frane quiescenti – episodiche a bassa frequenza | 100 – 300 anni      |
| frane antiche e paleofrane                      | > 300 anni          |

Tabella 3: Descrizione classi di frequenza probabile dei fenomeni franosi.

Per maggior chiarezza in Tabella 4 è riportata la stessa suddivisione espressa come "probabilità di accadimento" (calcolata per un lasso di tempo di 50 anni) e "tempo di ritorno" (Tr) adottata per la stessa metodologia dalla Provincia Auto-

#### noma di Bolzano.

| Proba                  | bilità di accadimento | Tempo di ri         | itorno (Tr)     |
|------------------------|-----------------------|---------------------|-----------------|
| calcolata per 50 anni: |                       | espresso in anni:   |                 |
| elevata                | 100% fino a 82%       | $T_R \le 30$        | molto frequente |
| media                  | 82% fino a 40%        | $30 < T_R \le 100$  | frequente       |
| bassa                  | 40% fino a 15%        | $100 < T_R \le 300$ | raro            |
| molto bassa            | < 15%                 | $T_{R} > 300$       | molto raro      |

Tabella 4: Tabella della probabilità di accadimento espressa in tempo di ritorno, modificata secondo BUWAL (1998) (fonte Provincia Autonoma di Bolzano)

I valori discreti (1÷3) associati agli intervalli di velocità nella Tabella 1 ed agli intervalli di severità geometrica (1÷3) nella Tabella 2, rappresentano i valori di ingresso nella matrice che definisce la classe di magnitudo (o "intensità") (Tabella 5) che può variare tra 1 e 9.

| Attribuzione classe di magnitudo |   | Intervalli di velocità (VEL) |   |   |
|----------------------------------|---|------------------------------|---|---|
|                                  |   | 1                            | 2 | 3 |
| Intervalli di severità           | 1 | 1                            | 2 | 3 |
| geometrica (SG)                  | 2 | 2                            | 4 | 6 |
|                                  | 3 | 3                            | 6 | 9 |

Tabella 5: Matrice di iterazione per la definizione delle diverse classi di magnitudo.

Anche se si tratta di fattori "semplici", che in ultima analisi corrispondono sostanzialmente all'energia cinetica che il corpo di frana può sviluppare durante il movimento, è possibile lo sviluppo di un sistema di classificazione nel quale i valori 1-2 corrispondono ad una magnitudo bassa, 3-4 ad una magnitudo media e 6-9 ad una magnitudo alta.

Attraverso l'interazione della classe di magnitudo (1÷9) definita nella Tabella 5 con le classi di frequenza probabile indicate in Tabella 3, è possibile assegnare la classe di pericolosità utilizzando la matrice in Tabella 6.

| Pericolosità connessa alla<br>magnitudo dei fenomeni<br>franosi |       | Frequenza probabile |                        |                         |                                                |
|-----------------------------------------------------------------|-------|---------------------|------------------------|-------------------------|------------------------------------------------|
|                                                                 |       | alta<br>1 – 30 anni | media<br>30 – 100 anni | bassa<br>100 – 300 anni | Frane antiche<br>( > 300 anni) e<br>paleofrane |
|                                                                 | 6 - 9 | P4                  | P4                     | P3                      |                                                |
| Classi di Magnitudo                                             | 3 - 4 | P3                  | P3                     | P2                      | P1                                             |
|                                                                 | 1 - 2 | P2                  | P1                     | P1                      |                                                |

Tabella 6: Matrice di iterazione per la valutazione della pericolosità derivante da fenomeni franosi connessa alla magnitudo.

Nel caso in cui non siano disponibili o affidabili i dati per la classificazione della

severità geometrica, è possibile pervenire alla classificazione della pericolosità attraverso l'interazione della classe di velocità direttamente con la classe di frequenza probabile, utilizzando la matrice in Tabella 7.

|                                                             |   | Frequ               |                        |                            |                                               |
|-------------------------------------------------------------|---|---------------------|------------------------|----------------------------|-----------------------------------------------|
| Pericolosità connessa alla<br>velocità dei fenomeni franosi |   | alta<br>1 – 30 anni | media<br>30 – 100 anni | bassa<br>100 – 300<br>anni | Frane antiche<br>(> 300 anni) e<br>paleofrane |
| Intervalli di velocità                                      | 3 | P4                  | P4                     | P3                         |                                               |
|                                                             | 2 | P3                  | P3                     | P2                         | P1                                            |
|                                                             | 1 | P2                  | P1                     | P1                         |                                               |

Tabella 7: Matrice di iterazione per la valutazione della pericolosità derivante da fenomeni franosi connessa alla velocità, applicabile ove non siano disponibili dati circa la severità geometrica dei dissesti e non sia possibile fare stime della stessa.

Per quanto riguarda i *fenomeni di crollo*, per analizzare il movimento di caduta e tentare di individuare le aree maggiormente soggette a propagazione di massi si possono utilizzare diversi metodi che possono essere applicati per approssimare la situazione reale. Tali metodi possono essere suddivisi in due macrogruppi fondamentali: i modelli di tipo morfologico (o empirici) e i modelli fisicamente basati (o cinematici).

I modelli morfologici sono essenzialmente indicati per una prima valutazione del massimo avanzamento dei massi, dipendono dalla topografia del versante e si basano su analisi statistiche eseguite su crolli storici. Rappresentativi di questo tipo di modello sono i metodi zenitali sviluppati da diversi autori (Onofri & Candian, 1979; Heinimann et al., 1998; Jaboyedoff & Labiouse, 2003).

I modelli cinematici affrontano invece il problema della delimitazione del massimo avanzamento dei blocchi in modo analitico considerando la fisica del moto e le relative equazioni pur con qualche necessaria semplificazione. Sono basati su diversi algoritmi che descrivono le relazioni esistenti tra tipo di movimento (caduta, rimbalzo, rotolamento e scivolamento), energia del blocco e coefficienti di restituzione del versante. Tali modelli di simulazione, nonostante il numero necessariamente limitato di variabili introducibili e l'aleatorietà insita nella determinazione dei parametri del moto, hanno il vantaggio di consentire simulazioni che ricostruiscono il comportamento della frana determinando le traiettorie, le velocità e le energie cinetiche dei massi durante il loro moto di caduta. La stima di tali dati risulta infatti essenziale per la pianificazione del territorio e la progettazione di opere di difesa.

L'analisi della massima propagazione delle frane di crollo su vasta area risulta spesso difficoltosa, in quanto i principali metodi di analisi sono concepiti per essere applicabili unicamente lungo profili di caduta preliminarmente definiti. Tali metodi di analisi, per quanto i profili siano numerosi e rappresentativi del versante oggetto dello studio, non descrivono però adeguatamente la reale traiettoria di caduta dei massi, in quanto non è possibile tenere in considerazione eventuali deviazioni rispetto al percorso prestabilito. Inoltre vengono individuate solo limitate porzioni del versante, rischiando di escludere dall'analisi aree di possibile sviluppo delle traiettorie e quindi sottostimare il fenomeno.

Tutti i modelli, sia di tipo bidimensionale, lungo sezioni, che tridimensionale, necessitano di una calibratura accurata e della determinazione precisa dei parametri di ingresso. Tali parametri possono essere ricavati da indagini in sito, da taratura a posteriori di crolli passati o mediante analisi probabilistiche. La scelta del modello da applicare e l'acquisizione dei parametri necessari per le analisi può essere effettuata a diversi livelli di dettaglio e a scale differenti, in relazione alle finalità del lavoro da realizzare e all'estensione dell'area da esaminare.

Nelle aree di crollo con caduta sassi ( $\emptyset \le 0,5$  m), massi ( $\emptyset 0.5$ ÷2m) e blocchi ( $\emptyset \ge 2$ m) è generalmente prevista:

- un'analisi del punto di massima propagazione seguendo il "*metodo zenitale*" presentato in BUWAL (1998) nelle aree inserite dal punto di vista urbanistico nella "categoria b" (Aree singolarmente edificate come piccoli insediamenti, case singole o sparse, e piccole strutture turistiche collegate all'attività agricola o analoghe, nonché strutture per il tempo libero o ad uso ricreativo)
- una modellazione/simulazione delle traiettorie nelle aree inserite dal punto di vista urbanistico nella "categoria a" (Aree molto urbanizzate e da urbanizzare. Comprende le zone edificabili esistenti e potenziali come anche le attrezzature e gli impianti turistici e collettivi, nei quali è prevista la presenza umana.).

Nel presente studio, viste le caratteristiche di urbanizzazione oltre che la notevole estensione areale delle aree soggette a fenomeni di caduta massi, è stato utilizzato il cosiddetto "*metodo zenitale*" proposto da Heinimann *et al.* (1998) e presentato in BUWAL (si veda Capitolo 4). Tale metodo, impostato su parametri di ingresso facilmente reperibili (modello digitale del terreno), consente infatti una valutazione preliminare su vasta scala delle aree di massimo avanzamento dei massi considerando la dissipazione di energia proporzionale alla lunghezza del percorso, in rapporto alla differenza di quota tra il punto di distacco e di arrivo. In particolare esso si basa sul concetto del "*cono d'ombra*" che delimita, orizzontalmente e verticalmente, l'area entro la quale si arresta la quasi totalità dei blocchi.

Il "*cono d'ombra*" viene essenzialmente definito dall'angolo di scansione verticale ovvero dall'angolo del segmento congiungente il punto di distacco e il punto di arresto e, nello spazio tridimensionale, dall'angolo di scansione orizzontale ovvero dall'angolo di deviazione angolare rispetto alla massima pendenza.

## 4.2 PERICOLOSITÀ DELLE AREE DI POTENZIALE TRANSITO - PLUGIN QPROTO

Il Plugin di QGis "QPROTO" permette di identificare l'area di invasione e stimare la suscettibilità e la pericolosità relativa (spaziale) di un crollo in roccia per analisi speditive, che tengano conto delle caratteristiche geometriche e topografiche del versante e di alcune considerazioni empiriche.

Partendo da punti sorgenti di caduta massi, lo strumento esegue un'analisi delle

aree di visibilità tramite l'applicazione delle funzioni GRASS GIS. Tale analisi è sostanzialmente rappresentata dalla definizione di un cono di visibilità, il cui apice rappresenta il punto origine della caduta, che viene descritto nello spazio da tre angoli:

- a = angolo di dispersione laterale;
- $\theta$  = angolo di immersione del versante rispetto al nord (deep direction)

Il cono di visibilità può assumere il significato di cono di invasione e tutte le aree visibili della superficie topografica possono essere raggiunte da un masso in caduta (Figura 8).

![](_page_27_Figure_5.jpeg)

Figura 8: Cono di visibilità come definito in QPROTO:  $\phi p$  = energy angle nel piano verticale; a = lateral angle nel piano orizzontale;  $\theta$  = deep direction.

I parametri di input necessari per le simulazioni in QPROTO sono costituiti da un DTM (nel caso in esame quello a maglia 5x5 m di Regione Lombardia) e da uno shape file contente le informazioni sui punti di punti di distacco.

Ogni punto di distacco (sorgente di blocchi) è caratterizzato da:

- $\rightarrow$  ID: numero di identificazione del punto sorgente.
- $\rightarrow$  ELEVATION: altezza in metri rispetto al livello del mare.
- → ASPECT: direzione di immersione del pendio nel punto sorgente, con valori espressi in gradi (°) in un intervallo compreso fra 0° e 360°.
- → PROPENSITY TO DETACHEMENT INDEX ID: esprime la probabilità di distacco associata ad ogni punto sorgente; tale indice può essere definito con

un differente livello di dettaglio sulla base delle informazioni disponibili sull'area di studio (dati storici, mappe che forniscono informazioni sulla densità delle fratture, inclinazione del pendio nella zona di distacco, ecc.) o in funzione dei risultati di indagini speditive condotte sul versante in esame. I valori ricadono in un intervallo compreso fra 0 ed 1.

- $\rightarrow$  BOULDER MASS: massa del blocco, con valori espressi in kg.
- $\rightarrow$  ENERGY LINE ANGLE: di energy line del cono con apice nel punto sorgente, con valori espressi in gradi (°) in un intervallo compreso fra 0° e 90°.
- → LATERAL SPREADING ANGLE: angolo di dispersione laterale del cono con apice nel punto sorgente, con valori espressi in gradi (°) in un intervallo compreso fra 0° e 90°.
- $\rightarrow$  VISIBILITY DISTANCE: massima distanza dell'analisi dal punto sorgente, con valori espressi in m.

#### 4.2.1Parametri di input

L'applicazione del metodo del cono tramite il plugin QPROTO richiede la definizione di un piccolo numero di parametri (gli angoli del cono) che rappresentano lo scenario in termini di condizioni del pendio (geometria, copertura forestale, ecc.) e caratteristiche dei blocchi (forma, volume).

Le maggiori incertezza nella scelta dei parametri di input sono connesse ai valori da attribuire all'angolo dell'Energy Line ed all'angolo di dispersione laterale.

Castelli et al. (2021) hanno effettuato una serie di test e verifiche attraverso l'esecuzione di un numero statisticamente rappresentativo di simulazioni 3D di caduta massi su pendi in diverse condizioni (presenza di bosco, volume e forma del blocco ecc.), sulla base di una variazione parametrica di alcune variabili. Per le simulazioni 3D è stato utilizzato il software di simulazione di caduta massi Roc-kyfor3D. È stata quindi eseguita un'analisi statistica dei risultati in termini di angolo di energia ed angolo laterale, correlando gli angoli del cono con le variabili considerate.

Nel seguito si sintetizzano i risultati descritti nell'articolo, utili per l'applicazione al caso in esame.

In condizioni di <u>assenza di alberi nella zona di transito</u> lungo il pendio, per un blocco sferico con volume unitario di raggio pari a 0,625 m (utilizzato al fine di considerare il puro effetto delle caratteristiche del pendio sull'evoluzione delle traiettorie di caduta massi), si ha:

| Inclinazione del pendio        | 30°  | 45°   | 60°   |
|--------------------------------|------|-------|-------|
| Angolo dell'Energy Line        | 26°  | 33,9° | 44,2° |
| Angolo di dispersione laterale | 5,2° | 9,6°  | 12,4° |

Tabella 8: Andamento dell'angolo dell'energy line e dell'angolo di dispersione laterale in funzione dell'inclinazione del pendio, in assenza di alberi

In condizioni di <u>presenza di alberi nella zona di transito</u> lungo il pendio, valutata con una densità di 400 alberi per ettaro (un individuo ogni 25 mq), sempre per un blocco sferico con volume unitario di raggio pari a 0,625 m, si ha:

| Inclinazione del pendio        | 30°   | 45°   | 60°  |
|--------------------------------|-------|-------|------|
| Angolo dell'Energy Line        | 31,1° | 37,6° | 46°  |
| Angolo di dispersione laterale | 18,4° | 11,3° | 9,9° |

Tabella 9: Andamento dell'angolo dell'energy line e dell'angolo di dispersione laterale in funzione dell'inclinazione del pendio, in presenza di alberi

In entrambi i casi, l'andamento dei valori è di tipo lineare, come evidenziato dalla Figura 9.

![](_page_29_Figure_4.jpeg)

Figura 9: Effetto della presenza di alberi sulla variazione dell'angolo dell'energy line e dell'angolo di dispersione laterale in funzione dell'inclinazione del pendio

Dalle simulazioni effettuate è stata inoltre ricavata la variazione dell'angolo dell'energy line in funzione delle caratteristiche dei blocchi in caduta (dimensione e forma), in condizione di presenza o assenza di alberi lungo il pendio.

I risultati ottenuti sono sintetizzati in Figura 10 e Figura 11.

29

![](_page_30_Figure_0.jpeg)

Figura 10: Variazione dell'angolo dell'energy line in funzione della forma e del volume dei blocchi, in condizioni di assenza o presenza di alberi lungo il pendio. Inclinazione del pendio pari a 30° (a), 45° (b) e 60° (c).

![](_page_30_Figure_2.jpeg)

Figura 11: Variazione dell'angolo dell'energy line in funzione del volume dei blocchi, al variare dell'inclinazione del pendio ed in condizioni di assenza o presenza di alberi lungo il pendio.

Quanto sopra può essere sintetizzato come riportato nei diagrammi seguenti.

![](_page_31_Figure_0.jpeg)

Figura 12: Stima dell'angolo dell'energy line in funzione del volume dei blocchi e dell'inclinazione del pendio, in condizioni di assenza (a) o presenza (b) di alberi lungo il pendio.

In sintesi i principali risultati delle elaborazioni portano ad affermare che:

- gli angoli dell'energy line possono riprodurre l'effetto di mitigazione legato alla presenza di alberi situati lungo la zona di transito del pendio;
- l'incremento del volume del blocco determina la riduzione dell'angolo dell'energy line ed aree di invasione più estese;
- l'incremento dell'angolo di inclinazione del pendio determina l'aumento dell'angolo dell'energy line e la riduzione della zona di invasione.

31

## 5. VALUTAZIONE DELLA PERICOLOSITA' DELLE AREE DI POTENZIALE DISTACCO MASSI

Per quanto riguarda le problematiche legate alla caduta massi, l'area in esame può essere suddivisa in due macrosettori in funzione delle caratteristiche stratigrafiche e strutturali delle formazioni rocciose affioranti.

Il primo macrosettore corrisponde al versante vallivo destro che si sviluppa per gran parte a monte della strada agro-silvo-pastorale che da Orezzo porta in Val di Grü, nel tratto compreso tra le località Piazzöi e Garimóncc. In esso il substrato roccioso è costituito da rocce per gran parte ben stratificate o con la stratificazione che comunque, anche se molto spaziata, costituisce uno dei sistemi di discontinuità principali tra quelli che suddividono gli ammassi. In tale macrosettore l'assetto strutturale risulta generalmente ben definito e si mantiene costante su ampie porzioni degli affioramenti rocciosi, consentendo di definire le tipologie cinematiche di distacco blocchi e di stimare le dimensioni degli stessi.

Il secondo macrosettore si sviluppa da Lacnì fino alle sorgenti Borleda e comprende il versante vallivo sinistro e parte di quello destro (fino alla confluenza con la Val di Grü la sola porzione sottostante la citata strada agro-silvopastorale). In esso il substrato roccioso è costituito da rocce prevalentemente massive od organizzate in bancate o corpi lentiformi di spessore plurimetrico. Tali litofacies hanno un assetto strutturale che a grande scala è definito da *master joint* molto pervasivi ma con spaziature elevate, mentre alla scala dei singoli affioramenti la disposizione delle discontinuità risulta alquanto variabile e solo in alcune limitate porzioni d'ammasso mantiene una certa regolarità, consentendo di individuare le possibilità cinematiche di distacco.

## 5.1 PRIMO MACROSETTORE

Il primo macrosettore comprende sia l'estesa fascia rocciosa delle pareti settentrionali della dorsale spartiacque del M. Cedrina, che in corrispondenza della culminazione superano il centinaio di metri di altezza, sia una serie di balze e risalti rocciosi discontinui disposti irregolarmente lungo il versante, anche nella zona più a Est dell'inizio della dorsale vera e propria (a monte delle località Oschiolo e Croce del Zuc). Gli ammassi rocciosi sono costituiti da una successione di rocce sedimentarie stratificate, in posizione stratigrafica regolare, che, dal basso verso l'alto, comprendono le litofacies delle Dolomie Zonate, dell''Argillite di Riva di Solto, del Calcare di Zu, della Formazione dell'Albenza e del Calcare di Sedrina.

I fenomeni di distacco massi riguardano prevalentemente gli ammassi rocciosi costituiti dalle litofacies del Calcare di Zu e della Formazione dell'Albenza, che affiorano in maniera molto più estesa e continua rispetto a quelli delle altre formazioni.

Il loro assetto strutturale, definito mediante 14 stazioni di rilievo (Figura 13), è caratterizzato dalle discontinuità impostate lungo la stratificazione e da quelle di altri due/tre sistemi principali ad essa ortogonali o subortogonali. La stratificazione ha immersione che varia da 120° a 230° con inclinazioni comprese tra 14° e

52° e, pertanto, ha una giacitura che, rispetto all'andamento a grande scala del versante, ha una disposizione variabile dal reggipoggio al traverpoggio (sempre tuttavia con una marcata componente a reggipoggio).

![](_page_33_Figure_1.jpeg)

Figura 13: Ubicazione delle stazioni di rilievo geostrutturale eseguite nel primo macrosettore.

Uno dei sistemi ad essa ortogonali ha generalmente una direzione simile a quella a grande scala del versante e, pertanto una disposizione a franapoggio, con inclinazioni che variano in quanto dipendono da quelle degli strati. Gli altri due sistemi, che possono comparire entrambi con la stessa frequenza sul singolo affioramento o, più frequentemente, uno dei due risulta subordinato rispetto all'altro, sono disposti da obliquamente a perpendicolarmente rispetto alle fasce rocciose.

Tale assetto comporta un'elevata possibilità di svincolo dei blocchi in cui sono suddivisi gli ammassi rocciosi: nelle pagine seguenti alle Figura 14 - Figura 27 sono riportate le ciclografiche dei valori medi sia della giacitura dei principali sistemi di discontinuità che del fronte delle pareti rocciose (pendio) in corrispondenza delle 14 stazioni di rilievo geostrutturale.

33

![](_page_34_Figure_0.jpeg)

Figura 14: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS1. I valori di giacitura sono espressi come Immersione/inclinazione.

![](_page_34_Figure_2.jpeg)

Figura 15: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS2. I valori di giacitura sono espressi come Immersione/inclinazione.

![](_page_35_Figure_0.jpeg)

Figura 16: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS3. I valori di giacitura sono espressi come Immersione/inclinazione.

![](_page_35_Figure_2.jpeg)

Figura 17: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS4. I valori di giacitura sono espressi come Immersione/inclinazione.


Figura 18: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS5. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 19: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS6. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 20: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS7. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 21: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS8. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 22: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS9. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 23: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS10. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 24: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS11. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 25: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS12. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 26: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS13. I valori di giacitura sono espressi come Immersione/inclinazione.



Figura 27: Stereogramma con riportate le ciclografiche dei valori medi dei sistemi di discontinuità principali e dell'orientazione media delle pareti rocciose (pendio) in corrispondenza della stazione di rilievo geostrutturale RS14. I valori di giacitura sono espressi come Immersione/inclinazione.

Nella seguente Tabella 10 sono riassunti i possibili cinematismi di mobilizzazione dei blocchi che ne consegue.

| Stazione<br>geostrutturale | Possibilità di scivolamento<br>planare | Possibilità di scivolamento di cuneo lungo<br>l'intersezione tra diversi sistemi |  |  |
|----------------------------|----------------------------------------|----------------------------------------------------------------------------------|--|--|
| RS1                        | Si (lungo un singolo sistema)          | Si (n.2 combinazioni sfavorevoli alla stabilità)                                 |  |  |
| RS2                        | Si (lungo un singolo sistema)          | Si (n.2 combinazioni sfavorevoli alla stabilità)                                 |  |  |
| RS3                        | Si (lungo un singolo sistema)          | Si (n.1 combinazione sfavorevole alla stabilità)                                 |  |  |
| RS4                        | No                                     | Si (n.1 combinazione sfavorevole alla stabilità)                                 |  |  |
| RS5                        | Si (lungo un singolo sistema)          | Si (n.2 combinazioni sfavorevoli alla stabilità)                                 |  |  |
| RS6                        | Si (lungo un singolo sistema)          | Si (n.2 combinazioni sfavorevoli alla stabilità)                                 |  |  |
| RS7                        | No                                     | Si (n.3 combinazioni sfavorevoli alla stabilità)                                 |  |  |
| RS8                        | No                                     | Si (n.1 combinazione sfavorevole alla stabilità)                                 |  |  |
| RS9                        | No                                     | Si (n.1 combinazione sfavorevole alla stabilità)                                 |  |  |
| RS10                       | Si (lungo un singolo sistema)          | No                                                                               |  |  |
| RS11                       | Si (lungo un singolo sistema)          | Si (n.1 combinazione sfavorevole alla stabilità)                                 |  |  |
| RS12                       | Si (lungo un singolo sistema)          | Si (n.3 combinazioni sfavorevoli alla stabilità)                                 |  |  |
| RS13                       | No                                     | Si (n.1 combinazione sfavorevole alla stabilità)                                 |  |  |
| RS14                       | Si (lungo un singolo sistema)          | Si (n.1 combinazione sfavorevole alla stabilità)                                 |  |  |

Tabella 10: Cinematismi possibili derivanti dalla disposizione dei valori medi della giacitura dei principali sistemi di discontinuità rispetto a quello medio del fronte delle pareti rocciose.

Il numero di possibilità cinematiche di svincolo dei blocchi individuati confrontando i valori medi di giacitura dei sistemi di discontinuità principali con quello delle pareti è comunque inferiore a quello reale che si riscontra sul terreno, in quanto la morfologia degli affioramenti rocciosi è articolata e l'orientazione dei fronti da cui possono verificarsi distacchi è molto variabile. Ciò comporta che lungo rientranze o speroni sporgenti della stessa balza rocciosa vi siano ulteriori possibilità di scivolamenti planari o di cunei rocciosi determinati dai sistemi di discontinuità principali. Inoltre, lungo diversi affioramenti si riscontra un numero elevato di fratture *random* (non sistematiche) che, combinandosi con quelle dei sistemi principali, o tra loro, aumentano le possibilità di svincolo dei blocchi.

A causa dell'erosione differenziale, che interessa in particolare la formazione del Calcare di Zu, dove si alternano litofacies calcaree molto tenaci e litofacies a maggior contenuto marnoso meno resistenti, lungo le fasce rocciose vi sono porzioni in aggetto dalle quali possono verificarsi ulteriori distacchi, come ad esempio crolli per scollamento di blocchi isolati a tetto dalla stratificazione.

Ampie porzioni d'ammasso, in particolare lungo le zone di ciglio sommitale delle pareti e delle balze rocciose, sono interessate da fenomeni di rilascio, anche molto marcato, evidenziato dalla presenza di fratture aperte (alcune fino a 8-10 cm) e di blocchi già smossi. Nelle fratture aperte si insinua l'apparato radicale della vegetazione (arbusti, rampicanti, ma anche alberi di alto fusto), la cui spinta rende possibile i distacchi di porzioni rocciose rilasciate anche in situazioni dove l'assetto delle discontinuità non ne consentirebbe il cinematismo (frequente è la presenza di blocchi o pilastrini basculati in direzione ortogonale od anche opposta a quella di massima pendenza). Diffusa inoltre è la presenza di blocchi o ammassi di blocchi disarticolati trattenuti in loco dalle radici della vegetazione, anche in posizioni a sbalzo lungo il ciglio dei risalti rocciosi. Lungo i ripidi pendii che separano le balze di roccia sono presenti anche alcuni blocchi già crollati ed arrestatisi in posizione alquanto precaria o contro i fusti degli alberi.

Per quando riguarda la dimensione dei blocchi, questa dipende primariamente dalla spaziatura delle discontinuità impostate lungo la stratificazione.

Nel Calcare di Zu la spaziatura degli strati più frequente è quella moderata (classe ISRM 20-60 cm), seguono poi la stretta (classe ISRM 6-20 cm) e, quindi, la larga (classe ISRM 60-200 cm). In alcuni orizzonti gli strati sono amalgamati e la spaziatura delle discontinuità impostate sugli stessi raggiunge anche i 3 m. Gli altri sistemi di discontinuità principali hanno prevalentemente spaziatura larga (classe ISRM 60-200 cm), ma lungo i singoli strati si alternano porzioni dove le fratture sono più ravvicinate ed altre dove queste si diradano. Laddove gli strati sono amalgamati le discontinuità dei sistemi subortogonali alla stratificazione hanno spesso spaziatura molto larga (classe ISRM 2-6 m).

Il grado di suddivisione degli ammassi rocciosi costituiti dalle litofacies del Calcare di Zu è pertanto molto variabile, con VRU che spaziano da pochi decimetri cubi ad alcuni metri cubi. Sulla base delle osservazioni effettuate le situazioni di instabilità più diffuse riguardano massi di  $20\div60 \text{ dm}^3$  di volume, seguono quelle che coinvolgono blocchi di  $0.1\div0.4 \text{ m}^3$ , mentre i volumi maggiori sono dell'ordine di  $2.8\div3.5 \text{ m}^3$ . In termini di "Classe di severità geometrica" per la valutazione della pericolosità del "*metodo svizzero*", i massi più piccoli ricadono quindi in quella definita dal "diametro dei blocchi < 0.5 m", mentre entrambe le altre situazioni ricadono in quella definita dal "diametro dei blocchi  $0.5\div2 \text{ m}$ ".

Nel Calcare di Sedrina, che affiora lungo il ciglio sommitale della dorsale del M. Cedrina l'assetto strutturale ed il grado di suddivisione degli ammassi rocciosi è analogo a quello del Calcare di Zu e, quindi, anche le classi di severità geometrica sono similari.

Nella Formazione dell'Albenza, che forma gran parte dell'estesa parete rocciosa settentrionale della dorsale del M. Cedrina, le litofacies sono organizzate in strati/banchi amalgamati e, pertanto, la spaziatura delle discontinuità impostata sulle strutture sedimentarie è mediamente molto larga (classe ISRM 2-6 m). Il grado di suddivisione è variabile, ma i volumi rocciosi isolati dalle discontinuità sono generalmente dell'ordine dei metri cubi. Le situazioni di potenziale instabilità più frequenti tra quelle direttamente osservate riguardano blocchi di  $2\div4$  m<sup>3</sup>, mentre i volumi massimi sono dell'ordine di  $6\div8$  m<sup>3</sup>. Tuttavia la dimensione di alcune nicchie di distacco fa presumere che in passato si siano verificati crolli di dimensioni maggiori, almeno fino a  $20\div25$  m<sup>3</sup>.

Tra Tribulina Zátel (Tribuna Zatel su CTR) e Garimóncc, a monte della strada agro-silvo-pastorale per la Val di Val di Grü affiorano anche le litofacies dell'Argillite di Riva di Solto (alternanze di calcari, marne ed argilliti) e delle Do-

lomie Zonate. Queste ultime sono rappresentate sia dalla facies tipica, ben stratificata (spessore degli strati da 5 a 60 cm), che da brecce in bancate di elevato spessore, in rapporti eteropici tra loro. Il grado di suddivisione degli ammassi rocciosi costituiti da tali rocce è alquanto variabile, in particolare nelle brecce si alternano porzioni o fasce notevolmente fratturate a porzioni massive. Le situazioni di instabilità più diffuse tra quelle osservate in sito riguardano piccoli blocchi (volume inferiore a 50 dm<sup>3</sup>), mentre i volumi massimi sono di  $0.5 \div 0.6$  m<sup>3</sup> nelle facies stratificate di entrambe le formazioni, e di  $1.5 \div 2$  m<sup>3</sup> nelle brecce.

Nella Tabella 11 si riassumono i valori adottati per la classificazione della pericolosità delle aree di potenziale distacco.

| Classi di severità<br>geometrica per<br>fenomeni di crollo        | Intervalli<br>di velocità | Frequenza<br>probabile | Magnitudo | Pericolosità | Zone                                                                                              |
|-------------------------------------------------------------------|---------------------------|------------------------|-----------|--------------|---------------------------------------------------------------------------------------------------|
| Diametro blocchi <0.5<br>m (volume < 0.07 m <sup>3</sup> )        | 3                         | 1-30 anni              | 3         | Р3           | Tutti gli<br>affioramenti                                                                         |
| Diametro blocchi 0.5-2<br>m (volume 0.07- 4.2<br>m <sup>3</sup> ) | 3                         | 30-100 anni            | 6         | P4           | Tutti gli<br>affioramenti                                                                         |
| Diametro blocchi >2 m<br>(volume > 4.2 m <sup>3</sup> )           | 3                         | 100-300<br>anni        | 9         | Р3           | Fascia rocciosa<br>della parete del M.<br>Cedrina costituita<br>da bancate di<br>spessore elevato |

Tabella 11: Valori adottati per la classificazione della pericolosità delle aree di potenziale distacco.

Di seguito si riporta una documentazione fotografica scelta per fornire un quadro più chiaro delle varie situazioni riscontrate durante i sopralluoghi in sito.



Foto 8: Porzione d'ammasso rilasciata con blocchi smossi, alcuni dei quali in precarie condizioni di stabilità (zona tra RS1 e RS2).



Foto 9: Blocco basculato poggiante su un pilastrino completamente isolato a tergo da una frattura beante (zona tra RS1 e RS2).



Foto 10: Blocco di 0.4 m<sup>3</sup> completamente isolato a tergo da una frattura beante e con la base per metà a sbalzo (zona tra RS1 e RS2).



Foto 11: Pilastrino di 0.7 m<sup>3</sup> completamente isolato a tergo da una frattura beante e con una base d'appoggio molto ridotta (zona tra RS2 e RS3).



Foto 12: Masso di 0.15 m<sup>3</sup> arrestatosi contro la vegetazione (tratto di pendio sottostante la zona tra RS2 e RS3).



Foto 13: Piccolo masso caduto di recente ed arrestatosi precariamente contro la vegetazione (tratto di pendio sottostante la zona tra RS3 e RS4).



Foto 14: Ammasso di blocchi instabili che possono mobilizzarsi per scivolamento planare, quello di maggiori dimensioni ha un volume di  $\approx$  2.5 m<sup>3</sup> (zona sottostante RS4).



Foto 15: Masso di 0.35 m<sup>3</sup> arrestatosi contro la vegetazione (tratto di pendio sottostante la zona tra RS3 e RS4).



Foto 16: Ammasso di blocchi instabili che possono mobilizzarsi per scivolamento planare, quello di maggiori dimensioni ha un volume stimabile in  $\approx$  3 m<sup>3</sup> (zona RS4).



Foto 17: Piccoli blocchi instabili per scivolamento planare su discontinuità disposta a franapoggio (zona RS5).



Foto 18: Risalto roccioso con numerosi blocchi instabili (fino a 1.2 m<sup>3</sup> di volume) sia per scivolamento planare che per cuneo roccioso, sono visibili anche diverse nicchie di distacchi già avvenuti (zona tra RS5 e RS7).



Foto 19: Blocco di  $\approx$  2.8 m<sup>3</sup> leggermente scivolato lungo una discontinuità a franapoggio ed arrestatosi contro un piccolo gradino formato dal tetto di uno strato (zona sottostante RS6).



Foto 20: Speroncino di 2.5 m<sup>3</sup> che può mobilizzarsi lateralmente rispetto all'orientazione media del pendio. A tergo sono presenti blocchi già smossi trattenuti da radici. (Zona RS7).



Foto 21: Masso di 1.3 m<sup>3</sup> scivolato per alcuni metri su un pendio detritico ed arrestatosi in una posizione di stabilità molto precaria (zona sottostante RS7).



Foto 22: Masso di 0.95 m<sup>3</sup> arrestatosi contro la vegetazione (tratto di pendio sottostante la zona tra RS6 e RS9).



Foto 23: Blocco isolato di 1.6 m<sup>3</sup>, già smosso e con superficie d'appoggio molto ridotta (zona tra RS4 e RS8).



Foto 24: Porzione d'ammasso rilasciata con diversi blocchi smossi, quelli di maggiori dimensioni (1.5÷2.5 m<sup>3</sup>) sono basculati e poggiano l'uno sull'altro (zona RS8).



Foto 25: Azione instabilizzante dell'apparato radicale di una pianta di alto fusto che, crescendo, amplia lo spazio tra blocchi già smossi di 1.2÷2.5 m<sup>3</sup> di volume (zona poco ad est di RS8).



Foto 26: Nicchia di un distacco recente causato dall'azione instabilizzante dell'apparato radicale di un albero (stima delle dimensioni della massa rocciosa crollata  $\approx 0.8 \text{ m}^3$ , molto probabilmente costituita da più blocchi di minori dimensioni) (zona ad est di RS8, nel tratto sottostante RS2-RS3).



Foto 27: Blocco di  $\approx$  1.3 m<sup>3</sup> ribaltatosi lateralmente e poggiante parzialmente su una superficie a franapoggio molto inclinata (zona ad est di RS8, nel tratto sottostante RS2-RS3).



Foto 28: Blocco di ≈ 3 m<sup>3</sup> completamente isolato sia a tergo che lateralmente, poggia su una superficie di strato a reggipoggio, ma per 2/3 è a sbalzo (zona ad est di RS8, nel tratto sottostante RS2-RS3).



Foto 29: Nicchie di distacco recenti per scivolamento di cunei rocciosi. La stima delle dimensioni delle porzioni rocciose crollate è di  $\approx$  3÷4 m<sup>3</sup>, costituite da più blocchi di minori dimensioni (tratto di pendio sottostante la zona tra RS11 e RS12).



Foto 30: Nicchia di distacco di uno scivolamento planare molto recente, che ha coinvolto una porzione rocciosa di circa 1.2 m<sup>3</sup> complessivi, costituita da più blocchi tabulari arrestatisi lungo il pendio sottostante (tratto di versante a valle di RS11).



Foto 31: Porzione d'ammasso in aggetto, suddivisa in più blocchi di grandi dimensioni (stima di quelli di volume maggiore 6÷8 m<sup>3</sup>), parzialmente isolata a tergo da una frattura molto aperta (zona tra RS10 e RS11, parete nord del M.Cedrina costituita dalle litofacies della Fm. Dell'Albenza).



Foto 32: Balza rocciosa con superficie sagomata secondo l'andamento delle nicchie di distacco di cunei rocciosi, anche recenti (tratto di pendio sottostante RS12).



Foto 33: Ammasso roccioso molto fratturato da cui sono possibili crolli in massa di porzioni di 5÷7 m<sup>3</sup> di volume, già suddivise in blocchi di piccole dimensioni (max. 0.6÷0.8 m<sup>3</sup>) (tratto di pendio sottostante RS12).



Foto 34: Falda detritica costituita prevalentemente da elementi rocciosi di piccola pezzatura (10÷50 dm<sup>3</sup> di volume), con sparsi massi di 03÷0.5 m<sup>3</sup>. Sono presenti anche blocchi più grandi, ma essendo in parte sepolti sotto il detrito più recente, non è possibile definirne con certezza le dimensioni (probabilmente sono dell'ordine di 0.8÷1.5 m<sup>3</sup>) (testata del vallone sottostante la zona tra RS11 e RS12).



Foto 35: Masso di crollo con un volume stimabile in 2.6÷2.8 m<sup>3</sup> (vallone sottostante la zona tra RS11 e RS12, circa 70 m a monte della strada agro-silvo-patorale per la Val di Grü).



Foto 36: Azione instabilizzante dell'apparato radicale delle piante su un ammasso roccioso molto fratturato, suddiviso in blocchi di volume variabile da alcuni dm<sup>3</sup> a 0.3÷0.4 m<sup>3</sup> (zona RS13).



Foto 37: Masso di 0.2 m<sup>3</sup> caduto di recente ed arrestatosi precariamente contro la vegetazione (tratto di pendio sottostante RS13).



Foto 38: Ammasso roccioso con le discontinuità impostate lungo la stratificazione spaziate fino a 3 m (strati amalgamati). Sono presenti altri due sistemi di discontinuità principali che permettono lo scivolamento di cunei di roccia di dimensioni fino a 3.5 m<sup>3</sup> di volume. L'entità dei distacchi è testimoniata anche dalle dimensioni delle numerose nicchie presenti (zona RS13).



Foto 39: Masso di 1.8 m<sup>3</sup> arrestatosi lungo il versante (zona sottostante RS14).



Foto 40: Facies a brecce delle Dolomie Zonate: l'ammasso roccioso è molto fratturato, con blocchi instabili di dimensioni fino a  $\approx$  1.5 m<sup>3</sup> (zona tra Tribulina Zátel e Garimóncc, a monte della strada agro-silvo-pastorale per la Val di Val di Grü).

## 5.2 SECONDO MACROSETTORE

Il secondo macrosettore comprende la porzione di Val Vertova maggiormente incassata tra i versanti, dove il fondovalle, a tratti, diviene una vera e propria forra. Entrambi i versanti vallivi sono molto acclivi, con pareti e risalti rocciosi verticali anche di diverse decine di metri di altezza. In sinistra idrografica la morfologia a grande scala dei versanti è poco articolata e lungo gli stessi le fasce rocciose da cui possono distaccarsi blocchi giungono sino alle zone sommitali (fino a circa 500 m di quota al di sopra del fondovalle principale). In destra idrografica, invece, la morfologia è molto più variegata per la presenza di diverse incisioni vallive tributarie, la maggior parte delle quali inforrate nel tratto terminale, e ciò comporta una minore estensione in quota delle zone potenzialmente soggette a distacchi di blocchi (fino a circa 250 m di quota al di sopra del fondovalle principale) per la presenza di crinali e dossi spartiacque.

Gli ammassi rocciosi sono costituiti prevalentemente dalle litofacies della Dolomia Principale, massive o in spesse bancate, e da un potente corpo di brecce e megabrecce attualmente attribuite alle Dolomie Zonate. A tratti a queste ultime si intercalano livelli di calcari scuri sottilmente stratificati, che costituiscono la facies più tipica della formazione. Il *trend* d'immersione delle strutture sedimentarie (bancatura, stratificazione, andamento dei corpi lentiformi delle brecce) è verso Est-Sudest, con inclinazioni che generalmente risultano comprese tra 30° e 45°. Ciò implica che tali strutture in sinistra idrografica siano disposte a franapoggio, mentre in destra la loro disposizione è a reggipoggio.

A grande scala l'assetto strutturale, oltre che dalle strutture sedimentarie, è definito da discontinuità a persistenza e spaziatura elevata o molto elevata (*master joint* ma anche faglie), con orientazione variabile ma prevalentemente molto inclinate, lungo le quali si sono impostati singoli tratti sia della valle principale, che delle sue tributarie. Alla scala dei singoli affioramenti, invece, l'assetto o è del tutto irregolare o varia notevolmente nell'ambito di pochi metri. Solo in alcune limitate porzioni d'ammasso (max. 300÷400 m<sup>2</sup>) alcune discontinuità compaiono con una discreta sistematicità, ma sempre accompagnate da un elevato numero di fratture *random*.

Anche il grado di suddivisione degli ammassi è molto variabile ed ha una distribuzione non regolare, con passaggi spesso repentini tra ampie porzioni massive e porzioni molto fratturate. Ciò, unitamente alla presenza di alcuni elementi morfologici apparentemente "anomali" (andamento di canaloni molto incisi con lunghi tratti rettilinei, allineamenti di contropendenze con canali e vallecole prive di circolazione idrica che scendono in direzione opposta dai versanti dello stesso dosso) e di accumuli di paleofrana di crollo, fa ritenere che ampie porzioni di entrambi i versanti vallivi siano state interessate da movimenti di riequilibrio gravitativo a seguito dell'approfondimento vallivo. Durante i sopralluoghi, in destra idrografica (lungo il versante antistante Gaemai) è stato individuato un fenomeno di questo tipo ma di dimensioni contenute: si tratta di un collasso gravitativo in roccia, ben evidenziato da una trincea di distacco che si sviluppa per una sessantina di metri al piede di una parete (Foto 41).



Foto 41: Trincea di distacco di un collasso gravitativo in roccia (versante destro, zona antistante Gaemai)

A causa della disposizione a franapoggio delle discontinuità impostate sulle strutture sedimentarie, in sinistra idrografica sono molto più frequenti le possibilità cinematiche di distacco per scivolamento planare o di cuneo rispetto che in destra. La possibilità che si verifichino crolli non dipende solo dalla presenza di discontinuità, ma riguarda anche morfologie carsiche relitte, rappresentate da speroni, lame e pinnacoli isolati (per gran parte con porzioni aggettanti) costituiti da roccia integra ma con cariature (piccole cavità) che ne riducono la resistenza. Alcune porzioni carsificate, anche di volume elevato, sono già basculate o leggermente smosse e, visivamente, appaiono in condizioni di stabilità precarie.

Anche in questo macrosettore lungo i cigli sommitali delle pareti e dei risalti rocciosi è frequente la presenza di blocchi già smossi per fenomeni di rilascio superficiale, in particolare in destra idrografica tra la Val Scaplà e la Val di Grü. In tali situazioni la rimobilizzazione dei blocchi è favorita dalla spinta dell'apparato radicale della vegetazione.

La presenza di blocchi già crollati ed arrestatisi in posizione precaria o contro i fusti degli alberi è più frequente in sinistra idrografica per la presenza di ampie porzioni di versante meno acclivi che in destra.

Con i sopralluoghi in sito sono state individuate alcune situazioni particolarmente critiche, oltre che per l'elevata possibilità che si verifichino crolli di blocchi di volume significativo, anche per il fatto che gravano direttamente sulla strada di servizio che percorre il fondovalle.

La prima riguarda il pilastro roccioso sottostante il dosso della località Castel (o

## Castelù) (Figura 28).

Alla sommità del pilastro un'ampia porzione rocciosa (volume stimato  $50 \div 60 \text{ m}^3$ ) è isolata alla base da una discontinuità molto persistente e liscia, immergente verso W con un'inclinazione di  $32^\circ \div 35^\circ$ , che potrebbe consentire la mobilizzazione di blocchi sia per scivolamento planare che per *toppling* (ribaltamento) (Foto  $42 \div Foto 44$ ). La porzione visivamente più instabile, che potrebbe mobilizzarsi per ribaltamento, ha un volume stimabile in  $8 \div 10 \text{ m}^3$  (Foto 43).

Sulla sottostante parete rocciosa, inoltre, sono presenti diversi blocchi (alcuni già completamente isolati e smossi) in condizioni di stabilità visivamente precarie, di volume variabile da 0.5 a 1.2 m<sup>3</sup>.



Figura 28: Ubicazione prima situazione critica per la possibilità di caduta massi.



Foto 42: Vista frontale della parete rocciosa del dosso sottostante la località Castel con evidenziate le principali situazioni di instabilità.



Foto 43: Dettaglio frontale della sommità della parete rocciosa del dosso sottostante la località Castel, dove un'ampia porzione rocciosa è isolata alla base da una discontinuità molto persistente e liscia che potrebbe consentire la mobilizzazione di blocchi sia per scivolamento planare che per ribaltamento (cinematismi evidenziati dalle frecce).



Foto 44: Ripresa con drone della sommità della parete rocciosa del dosso sottostante la località Castel con evidenziate le principali situazioni di instabilità.

La seconda riguarda le pareti che sovrastano un tratto di circa 65 m di lunghezza compreso tra il "Fontanì de Gaernài" e l'inizio del sentiero CAI 529A (Figura 29), ed in particolare quelle di un risalto con ampie porzioni instabili e già interessato da crolli (Foto 45).



Figura 29: Ubicazione seconda situazione critica per la possibilità di caduta massi.



Foto 45: Risalto roccioso con ampie porzioni instabili e già interessato da crolli (versante sinistro, tratto in prossimità della seconda sbarra della strada di servizio di fondovalle, appena superato il "Fontanì de Gaernài").

Al piede vi è un accumulo di blocchi, molti dei quali di volume >1 m<sup>3</sup> (max  $\approx$  3 m<sup>3</sup>) (Foto 46).



Foto 46: Vista dal basso del risalto roccioso della foto precedente, al piede è ben visibile l'accumulo formato dai blocchi già crollati.

L'ammasso roccioso è suddiviso da tre sistemi di discontinuità principali (K1 235°/38°, K2 040°/80° e K3 150°/80°) a persistenza media (3-10 m) e spaziatura da larga a molto larga (0.6-3 m), e da numerose fratture non sistematiche. Vi è la possibilità di ulteriori crolli in massa fino a  $10 \div 15$  m<sup>3</sup>, ma a causa dell'elevato grado di fratturazione è probabile che il singolo blocco di maggiori dimensioni non superi i  $3 \div 4$  m<sup>3</sup>.

La terza interessa le pareti che sovrastano un tratto del sentiero CAI 529A e della sottostante strada di servizio poco più a monte della precedente situazione (Figura 30 e Foto 47). Anche in questo caso l'ammasso roccioso è suddiviso da tre sistemi di discontinuità principali (K1 265°/40°, K2 050°/85° e K3 165°/80°) a persistenza media (3-10 m) e spaziatura da larga a molto larga (0.5-2.5 m), e da numerose fratture non sistematiche.

Le discontinuità dei sistemi principali isolano porzioni d'ammasso fratturate che possono mobilizzarsi con un cinematismo sia per scivolamento planare che per cuneo (Foto 48). Vi è la possibilità di crolli in massa fino a  $40 \div 45$  m<sup>3</sup>, ma a causa dell'elevato grado di fratturazione è probabile che il singolo blocco di maggiori dimensioni non superi i  $2 \div 2.5$  m<sup>3</sup>.



Figura 30: Ubicazione terza situazione critica per la possibilità di caduta massi.



Foto 47: Balza rocciosa con un assetto delle discontinuità principali sfavorevole alla stabilità da cui possono verificarsi anche crolli in massa (versante sinistro, poco a monte del sentiero CAI 529A in prossimità della "Corna di pöles").



Foto 48: Vista dal basso delle porzioni rocciose instabili della balza rocciosa della foto precedente.

La possibilità che si possa verificare distacchi riguarda anche porzioni degli accu-

muli di paleofrana di crollo, laddove hanno pendenza molto elevata. La situazione apparentemente più critica tra quelle osservate durante i sopralluoghi è posta al piede del versante sinistro, nel tratto immediatamente a valle del 1° "guado con passaroi": pochi metri al di sopra della strada di servizio che percorre il fondovalle vi è un blocco ciclopico (volume dell'ordine del centinaio di m<sup>3</sup>) che poggia su massi di dimensioni molto inferiori, cementati tra loro (Foto 49).



Foto 49: Blocco ciclopico con la parte frontale in aggetto (versante sinistro, tratto immediatamente a valle del 1° "guado con passaroi").

La parte frontale del blocco è in forte aggetto a causa di distacchi dei massi sottostanti. Si tratta di una situazione molto particolare, di cui non è possibile definirne le effettive condizioni di stabilità, anche perché il grado di cementazione dei massi lungo la base d'appoggio è variabile, ma risulta evidente che con un ulteriore progredire dei distacchi anche il grande blocco potrebbe rimobilizzarsi.

In base alle osservazioni effettuate i distacchi più frequenti riguardano massi di piccole dimensioni (la gran parte con volumi < 50 dm<sup>3</sup>). Questi interessano la strada di servizio del fondovalle unicamente dove questa si sviluppa a ridosso delle pareti rocciose o di tratti di pendio molto ripidi, poiché tali pezzature si arrestano lungo i versanti per la presenza di ostacoli morfologici o della vegetazione. La possibilità di distacchi di piccoli blocchi dalle fasce rocciose adiacenti la strada è comunque elevata e dipende da diversi fattori, quali l'assetto strutturale sfavorevole nelle porzioni fratturate, il crioclastismo (che interessa anche le porzioni massive) e l'azione degli apparati radicali della vegetazione (Foto 50 e Foto 51).

Diffuse sono le situazioni di instabilità che coinvolgono blocchi di volume compreso tra 0.5 e 3.5 m<sup>3</sup>, ed in questo intervallo di valori ricade la maggior parte dei massi già crollati presenti sia lungo il fondovalle, sia lungo i ripidi canaloni del

## versante sinistro.



Foto 50: Particolare di una parete rocciosa direttamente sovrastante la strada di servizio che percorre il fondovalle dove l'assetto strutturale sfavorevole consente il distacco di piccoli blocchi (versante destro, tratto a monte del 3° guado).



Foto 51: Particolare di una parete rocciosa direttamente sovrastante la strada di servizio che percorre il fondovalle dove il distacco di piccoli blocchi è legato sia all'assetto strutturale sfavorevole che al crioclastismo (versante sinistro, presso la "Corna di Caaai").

Per quanto riguarda le volumetrie maggiori, sono state osservate situazioni di instabilità che coinvolgono singoli blocchi di  $5 \div 10 \text{ m}^3$  o porzioni di ammasso fratturate di alcune decine di metri cubi che, tuttavia, in caso di crollo si frammenterebbero in blocchi di dimensioni minori.

Sono altresì state osservate altre situazioni, di cui non è possibile effettuare valutazioni circa il loro effettivo grado di stabilità, che potrebbero interessare sempre volumi di alcune decine di metri cubi, ma di roccia non fratturata. Crolli avvenuti in passato che hanno coinvolto grandi volumi rocciosi sono testimoniati dalle dimensioni di alcune grandi nicchie di distacco e da diversi blocchi ciclopici ( $30 \div 100 \text{ m}^3$ ) presenti lungo il fondovalle e negli accumuli di antiche paleofrane di crollo.

| Classi di severità<br>geometrica per feno-<br>meni di crollo   | Intervalli<br>di velocità | Frequenza<br>probabile | Magnitudo | Pericolosità | Zone                                                                                                 |
|----------------------------------------------------------------|---------------------------|------------------------|-----------|--------------|------------------------------------------------------------------------------------------------------|
| Diametro blocchi <0.5 m<br>(volume < 0.07 m <sup>3</sup> )     | 3                         | 1-30 anni              | 3         | Р3           | Tutti gli affioramen-<br>ti                                                                          |
| Diametro blocchi 0.5-2<br>m (volume 0.07- 4.2 m <sup>3</sup> ) | 3                         | 30-100 anni            | 6         | P4           | Tutti gli affioramen-<br>ti                                                                          |
| Diametro blocchi >2 m<br>(volume > 4.2 m <sup>3</sup> )        | 3                         | 30-100 anni            | 9         | P4           | Pareti del dosso<br>sottostante la locali-<br>tà Castel                                              |
| Diametro blocchi >2 m<br>(volume > 4.2 m <sup>3</sup> )        | 3                         | 100-300 anni           | 9         | Р3           | Locali settori delle<br>pareti di entrambi i<br>versanti nella zona<br>della forra del T.<br>Vertova |

Nella tabella seguente si riassumono i valori adottati per la classificazione della pericolosità delle aree di potenziale distacco.

Tabella 12: Valori adottati per la classificazione della pericolosità delle aree di potenziale distacco.

Di seguito si riporta una documentazione fotografica scelta per fornire un quadro più chiaro delle varie situazioni riscontrate durante i sopralluoghi in sito.



Foto 52: Pilastrino di circa 1.3 m<sup>3</sup> isolato a tergo da una frattura aperta, con la parte frontale a sbalzo ed una base d'appoggio di roccia integra ma di dimensioni molto ridotte a causa della presenza di piccole cavità carsiche, (ciglio del versante destro, zona direttamente sovrastante la strada di servizio che percorre il fondovalle al "Poz di caai").



Foto 53: Blocco di circa 1 m<sup>3</sup> completamente isolato e parzialmente a sbalzo, poggiante su un piccolo gradino; può crollare a causa della spinta delle radici che crescono nella frattura a tergo (ciglio del versante destro, zona sovrastante il 1° "guado con passaroi" della strada di servizio che percorre il fondovalle).


Foto 54: Lama rocciosa con un volume stimabile in circa 3 m<sup>3</sup> distaccatasi da una parete strapiombante, non è stato possibile osservarne la base d'appoggio ma visivamente appare alquanto instabile (versante destro, zona sovrastante il 2° "guado con passaroi" della strada di servizio che percorre il fondovalle).



Foto 55: Porzioni rocciose in forte aggetto, quella in centro (volume stimabile in 5-6 m<sup>3</sup>) è molto fratturata, mentre quella a destra (volume stimabile in 8-10 m<sup>3</sup>) è parzialmente isolata a tergo da una frattura aperta per dissoluzione carsica (versante destro, zona sovrastante il tratto compreso tra la Val di Scaplà ed il 1° "guado con passaroi" della strada di servizio che percorre il fondovalle).



Foto 56: Massa rocciosa poco fratturata di volume > 30 m<sup>3</sup>, è in aggetto e risulta parzialmente isolata a tergo da una discontinuità molto aperta; alla sua sinistra vi sono blocchi visivamente instabili di volume stimabile in 2-4 m<sup>3</sup> (versante destro, pareti sovrastanti la Valle Scaplà).



Foto 57: Ripresa da drone con evidenziati blocchi instabili di volumetria stimata variabile da 3 a 6 m<sup>3</sup> (versante destro, zona sovrastante il tratto poco a valle del 1° "guado con passaroi" della strada di servizio che percorre il fondovalle).



Foto 58: Piccolo masso di un crollo recente arrestatosi su una cengia (versante destro, zona sovrastante il tratto compreso tra Stalla Gnoch e la "Corna di pöles").



Foto 59: Blocchi già smossi ed instabili, quello di maggiori dimensioni ha un volume di circa  $0.5\div0.6~m^3$  (versante destro, zona sovrastante le sorgenti Borleda).



Foto 60: Blocchi già smossi ed instabili di volume >5 m<sup>3</sup>, alla sommità una porzione rocciosa aggettante di oltre 20 m<sup>3</sup> di volume, suddivisa da discontinuità disposte a franapoggio (versante sinistro, zona de la Corna, sovrastante il tratto presso il 1° ponte della strada di servizio che percorre il fondovalle).



Foto 61: Ripresa con drone della situazione riportata nella foto precedente (versante sinistro, zona de la Corna, sovrastante il tratto presso il 1° ponte della strada di servizio che percorre il fondo-valle).



Foto 62: Blocchi già smossi ed instabili alla sommità di un pilastro roccioso (volumi 0.5÷2 m<sup>3</sup> (versante sinistro, zona sovrastante il tratto presso il 2° ponte della strada di servizio che percorre il fondovalle).



Foto 63: Porzioni rocciose instabili alla sommità di un pilastro molto fratturato (volumi 0.5÷4 m<sup>3</sup> (versante sinistro, zona sovrastante il tratto presso il 2° ponte della strada di servizio che percorre il fondovalle).



Foto 64: Pinnacolo molto fratturato con alla sommità un blocco modellato dal carsismo e basculato (volume stimato 7-8 m<sup>3</sup>). Sulla parete sottostante sono presenti numerose nicchie di distacco di blocchi di 0.5÷1.2 m<sup>3</sup> mobilizzatisi sia per ribaltamento che per scivolamento planare (versante sinistro, zona sovrastante il tratto presso il 2° ponte della strada di servizio che percorre il fondovalle).



Foto 65: Blocchi già smossi ed instabili di volume 0.7÷1.5 m<sup>3</sup> (versante sinistro, ciglio di una balza rocciosa sovrastante il tratto di strada di servizio che percorre il fondovalle compreso tra il 1° ponte e "Gaemai bas").



Foto 66: Porzione d'ammasso molto fratturata dalla quale si sono già verificati crolli, sono possibili ulteriori distacchi di blocchi fino a circa 2.5 m<sup>3</sup> di volume m<sup>3</sup> (versante sinistro, balza rocciosa sovrastante la zona di "Gaemai").



Foto 67: Piccolo masso di un crollo recente arrestatosi su una variante del sentiero CAI 529A (versante sinistro, zona immediatamente sovrastante la strada di servizio che percorre il fondovalle nei pressi del 2º "guado con passaroi".



Foto 68: Blocco di ≈3.8 m<sup>3</sup> di volume che può mobilizzarsi per ribaltamento, a tergo è isolato da una frattura aperta ed ha una base d'appoggio di dimensioni molto ridotte. Il blocco è posto lungo una balza 15 m al di sopra della strada di servizio che percorre il fondovalle (versante sinistro, 250 m a valle del "3° guado").



Foto 69: Blocco ciclopico (volume dell'ordine del centinaio di m<sup>3</sup>) dell'accumulo di una paleofrana di crollo: la sua parte frontale è in aggetto a causa di distacchi dei massi più piccoli (cementati tra loro) su cui poggia. Il blocco è posto pochi metri al di sopra della strada di servizio che percorre il fondovalle (versante sinistro, tratto immediatamente a valle del 1° "guado con passaroi").



Foto 70: Blocchi di un crollo recente che ha lesionato un muretto della strada di servizio che percorre il fondovalle: il masso che ha oltrepassato il muretto ha un volume di 0.1 m<sup>3</sup> (versante sinistro, circa 90 m a valle del 1° "guado con passaroi").



Foto 71: Masso tabulare di  $\approx$  0.15 m<sup>3</sup> arrestatosi in posizione precaria alla sommità di una balza rocciosa (versante sinistro, ad est della località Melgher).



Foto 72: Pilastrino roccioso molto fratturato (volume  $\approx 1.6 \text{ m}^3$ ) isolato a tergo da una frattura aperta e con la base suddivisa da discontinuità a franapoggio poco persistenti ma molto ravvicinate (versante sinistro, zona sovrastante il risalto roccioso della foto precedente).



Foto 73: Lama rocciosa aggettante sia nella parte frontale che lateralmente, da cui sono possibili distacchi per crollo diretto o ribaltamento. La lama ha un volume > 20 m<sup>3</sup> ma a causa del grado di fratturazione è probabile che il singolo blocco di maggiori dimensioni non superi i 2.5÷3 m<sup>3</sup> (versante sinistro, a monte di "Gaernài olt").



Foto 74: Masso di 0.2 m<sup>3</sup> caduto di recente ed arrestatosi contro la vegetazione (versante sinistro, zona sovrastante il tratto di strada di servizio poco a valle del "3º guado").



Foto 75: Pinnacolo di circa 100 m<sup>3</sup> di volume, discretamente fratturato e con discontinuità a franapoggio che lo isolano parzialmente dal sottostante sperone da cui si eleva (versante sinistro, zona sovrastante il tratto di strada di servizio poco a valle del "3º guado").



Foto 76: Pilastrino di 0.6 m<sup>3</sup>, molto fratturato ed in precarie condizioni di stabilità (versante sinistro, zona sovrastante il tratto di strada di servizio poco a valle del "3º guado").



Foto 77: Crollo recente che causato l'abbattimento di alcune piante, alcuni blocchi (0.2 e 0.4 m<sup>3</sup>) dopo l'impatto con gli alberi si sono arrestati su un pendio molto ripido (versante sinistro, zona sovrastante il tratto di strada di servizio poco a valle del "3º guado").



Foto 78: Blocchi smossi (0.5 e 0.2 m<sup>3</sup>) in precarie condizioni di stabilità (versante sinistro, zona sovrastante il "Crap di asegn").



Foto 79: Pilastro roccioso molto fratturato con la porzione sommitale leggermente aggettante; il volume complessivo della massa rocciosa instabile è di 4.5÷5 m<sup>3</sup>, ma a causa dell'elevato grado di suddivisione è probabile che in caso di crollo il singolo blocco di maggiori dimensioni non superi 0.6÷0.8 m<sup>3</sup> (versante sinistro, zona sovrastante il "Crap di asegn").



Foto 80: Porzione rocciosa di circa 1.6 m<sup>3</sup> di volume quasi completamente isolata a tergo ed alla base da una frattura beante per carsismo, entro cui cresce l'apparato radicale di una pianta (versante sinistro, zona sovrastante "Stalle Canet").

## 6. VALUTAZIONE DELLA PERICOLOSITA' DELLE AREE DI POTENZIALE TRANSITO DEI MASSI

Nel corso del presente studio sono state eseguite elaborazioni su tutte le aree sorgente di caduta massi evidenziate dai sopralluoghi di terreno e dall'analisi geologica. A causa di alcune limitazioni dell'applicativo QProto, è stato necessario eseguire l'elaborazione per ogni scarpata, sommando poi in fase di editing finale i risultati ottenuti (Tavola 6).

I dati di ingresso utilizzati per le elaborazioni sono i seguenti:

- → ID: ogni area sorgente di caduta massi è stata suddivisa in celle di 5x5 m, coincidenti con le celle del DTM di Regione Lombardia utilizzato per le elaborazioni; le celle, in numero totale di circa 28.000, sono state univocamente identificate con un numero progressivo.
- $\rightarrow~$  ELEVATION: tale valore è stato ricavato dal DTM di Regione Lombardia con cella 5x5 m.
- → ASPECT: tale valore è stato definito sulla base della carta della esposizione dei versanti (Tavola 4), ricavata tramite QGis sulla base del DTM di Regione Lombardia. Per un esame complessivo della morfologia dei versanti è stata predisposta anche una carta delle pendenze (Tavola 3).
- → PROPENSITY TO DETACHEMENT INDEX ID: il valore è stato considerato sistematicamente pari ad 1 in tutte le elaborazioni.
- → BOULDER MASS: sono state eseguite elaborazioni con blocchi di diversa massa, sulla base delle caratteristiche degli ammassi rocciosi verificati in situ e delle classi di volume del metodo Buwall. Nello specifico si sono scelti per il primo macrosettore blocchi di volume pari a 2,5 mc, e per il secondo macrosettore blocchi di volume pari a 3,5 mc.
- → ENERGY LINE ANGLE: sulla base di quanto previsto dalla metodica, e tarandosi sulla base di una serie di elaborazioni progressive e sui risultati delle verifiche di dettaglio di caduta (Allegato 1), oltre che sulle cadute già verificatesi, è stato assegnato al parametro un valore pari a 35°.
- → LATERAL SPREADING ANGLE: sulla base di quanto previsto dalla metodica, e tarandosi sulla base di una serie di elaborazioni progressive e sui risultati delle verifiche di dettaglio di caduta (Allegato 1), oltre che sulle cadute già verificatesi, è stato assegnato al parametro un valore pari a 15°.
- → VISIBILITY DISTANCE: sulla base di quanto previsto dalla metodica, è stato assegnato un valore pari a 800 m.

Ogni elaborazione di QProto produce una serie di mappe raster relative a diversi parametri, in cui per ogni cella analizzata viene assegnato un valore specifico. Tra le elaborazioni possibili (energia media, minima e massima, velocità minima, media e massima, ecc.), si è ritenuto di utilizzare per i fini del presente studio la mappa *Count*, che definisce il numero di transiti dei blocchi attraverso ciascuna cella. Il numero di transiti è rappresentato con una scala di colori, come eviden-

ziato nell'esempio di Figura 31.



Figura 31: Stralcio esemplificativo della cartografia relativa alla caduta massi.

#### 7. VALUTAZIONE DELLA PERICOLOSITA' COMPLESSIVA E DEL RI-SCHIO

#### 7.1 DEFINIZIONE DELLA PERICOLOSITÀ

Nell'ambito del presente lavoro è stata predisposta una Carta della pericolosità in scala 1:5.000 (Tavola 8), relativa a tutta l'area oggetto di indagine.

Gli elementi di pericolosità rappresentati nella cartografia sono i seguenti:

- aree sorgenti interessate da potenziali fenomeni di distacco e caduta massi; tali aree, perimetrate e valutate nelle loro caratteristiche attraverso sopralluoghi e rilievi in sito, sono state classificate in termini di pericolosità attraverso il metodo Buwal sopra descritto; si sottolinea che la maggior parte delle aree di distacco sono caratterizzate da più classi di pericolosità in funzione del volume dei blocchi e della frequenza di accadimento; nella Tavola 5 è riportata la classe di pericolosità più elevata;
- aree interessate da transito ed arresto dei massi derivanti dalle precedenti aree sorgenti; tali aree (Tavola 6) sono state perimetrate e valutate nelle loro caratteristiche di pericolosità attraverso l'utilizzo del software QPROTO;
- 3) aree classificate nella cartografia PAI e conseguentemente nella cartografia degli studi geologici di supporto ai PGT dei comuni di Gazzaniga e Vertova come frane attive (Fa), quiescenti (Fq) e stabilizzate (Fs), oltre che come a pericolosità di esondazione molto elevata (Ee); l'attribuzione della pericolosità su tali aree si basa sui criteri previsti dalla DGR 30 novembre 2011 n. IX/2616 e smi; nello specifico le aree di frana attiva ricadenti nel settore di studio, riconducibili sistematicamente a fenomeni di caduta massi, sono state tutte riperimetrate nell'ambito delle attività di sito di cui al punto 1);
- 4) aree non inserite nella cartografia PAI ma individuate in sede di sopralluogo, come evidenziate in Figura 32.

Le aree relative ai punti 3) e 4) sono riportate nella Tavola 7.

Tali aree sono classificate come segue:

- frana attiva (i due dissesti che hanno interessato il ciglio e la scarpata di valle della sede stradale che conduce in Val di Grü, presso la località Clacchei);
- frana quiescente (il corpo di frana entro il quale si è verificato uno dei dissesti precedentemente citati)
- a pericolosità di esondazione molto elevata (l'alveo del corso d'acqua lungo il quale si è verificata la colata detritica a seguito dell'ostruzione causata da uno dei dissesti precedentemente citati);
- conoide attivo parzialmente protetto (il conoide posto allo sbocco del corso d'acqua lungo il quale si è verificata la colata detritica).



Figura 32: Ubicazione dei dissesti individuati durante i sopralluoghi e non inseriti nella cartografia PAI.

Le classi di pericolosità attribuite per le tipologie di aree sopra elencate sono sintetizzate nella Tabella 13.

| GRUPPO | UPPO TIPOLOGIA                                                                                                                                |         |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
|        | Aree di distacco con classe di magnitudo 3 e frequenza al-<br>ta (1-30 anni)<br>Blocchi di volume <0,07 m <sup>3</sup> (diametro <0,5 m)      | P3      |  |  |  |
| 1)     | Aree di distacco con classi di magnitudo 6 e frequenza<br>media (30-100 anni)<br>Blocchi di volume 0,07÷4.2 m <sup>3</sup> (diametro 0,5÷2 m) | P4      |  |  |  |
|        | Aree di distacco con classi di magnitudo 9 e frequenza<br>bassa (100-300 anni)<br>Blocchi di volume >4.2 m <sup>3</sup> (diametro >2 m)       | P3      |  |  |  |
| 2)     | Aree a pericolosità di esondazione molto elevata (Ee)                                                                                         | P4 (H4) |  |  |  |
| 3)     | Aree di conoide attivo parzialmente protetto                                                                                                  | P3      |  |  |  |
|        | Aree di frana attiva (Fa)                                                                                                                     | P4      |  |  |  |
| 4)     | Aree di frana quiescente (Fq)                                                                                                                 | P3 (H3) |  |  |  |
|        | Aree di frana stabilizzata (Fs)                                                                                                               | P1 (H1) |  |  |  |

Tabella 13: Classi di pericolosità.

# 7.2 VALUTAZIONE DEL RISCHIO

Come noto, per la definizione del rischio è necessario combinare la pericolosità di un'area rispetto ad un evento con la vulnerabilità ed il danno che possono subire gli elementi esposti. In analogia con quanto fatto, a titolo di esempio, dall'ADBPO per l'aggiornamento e revisione delle mappe di pericolosità e del rischio idraulico nell'ambito del PGRA, le ipotesi assunte per la valutazione della classe di rischio sono le seguenti:

- la vulnerabilità è stata assunta a favore di sicurezza, uguale ad 1 per tutti gli elementi esposti considerati;
- il valore del danno è stato attribuito assegnando un peso compreso tra 1 e 4 (corrispondente alle 4 classi di danno D1, D2, D3, D4) a seconda dell'importanza della classe d'uso del suolo. In particolare, sono stati assegnati valori maggiori alle classi residenziali che comportano una presenza antropica costante e valori via via decrescenti alle diverse tipologie di attività produttive, privilegiando le attività maggiormente concentrate (attività industriali), rispetto alle attività estensive (attività agricole); il riferimento principale per l'assegnazione delle classi di danno sono stati gli indirizzi operativi emanati dal MATTM nel gennaio 2013.

Si riportano di seguito le attribuzioni della classe di danno ai diversi elementi esposti effettivamente presenti nell'area in esame, ricavati dalla cartografia regionale relativa all'uso del suolo aggiornata all'anno 2018 (Dusaf 6.0), integrata e dettagliata con alcuni elementi (edifici) effettivamente presenti nell'area in esame e non evidenziati, in termini di uso effettivo del suolo, nella cartografia regionale (Tabella 14 e Tabella 15).

| CATEGORIA DI USO DEL SUOLO                                                             | CLASSE DI DANNO |
|----------------------------------------------------------------------------------------|-----------------|
| 1122 - Tessuto residenziale rado e nucleiforme                                         | D4              |
| 1123 - Tessuto residenziale sparso                                                     | D4              |
| 2311 - prati permanenti in assenza di specie arboree ed ar-<br>bustive                 | D1              |
| 2312 - prati permanenti con presenza di specie arboree ed arbustive                    | D1              |
| 31111 – boschi di latifoglie a densità media e alta governati<br>a ceduo (PREVALENTE)  | D1              |
| 3114 - castagneti da frutto                                                            | D1              |
| 3241 - cespuglieti con presenza significativa di specie arbu-<br>stive alte ed arboree | D1              |
| 3242 - cespuglieti in aree di agricole abbandonate                                     | D1              |

Tabella 14: Categorie di uso del suolo e classi di danno.

| Reti stradali secondarie – strade comunali | D3 |
|--------------------------------------------|----|

Tabella 15: Categoria di uso del suolo e classe di danno utilizzata nel caso di presenza di persone lungo il fondovalle della Val Vertova.

Le categorie di uso del suolo sono riportate nella Tavola 9.

La determinazione del rischio è ottenuta dalla combinazione dei parametri vulnerabilità, danno e pericolosità, condotta attraverso una matrice con 4 righe e 4 colonne (Tabella 16).

|    | P4 | P3 | P2 | P1 |
|----|----|----|----|----|
| D4 | R4 | R4 | R3 | R2 |
| D3 | R4 | R3 | R2 | R1 |
| D2 | R3 | R2 | R1 | R1 |
| D1 | R2 | R1 | R1 | R1 |

Tabella 16: Matrice parametri Danno e Pericolosità.

Nelle righe sono riportati i parametri danno-vulnerabilità e nelle colonne i livelli di pericolosità associabili agli eventi a molto elevata, elevata, media e bassa probabilità di accadimento.

La Tavola 10 presenta la carta finale del rischio per l'intera area in esame.

#### 7.3 CONSIDERAZIONI FINALI

Lo studio eseguito e sopra descritto ha consentito di definire le condizioni di pericolosità e di rischio per tutta l'area oggetto di studio.

Come prevedibile, sono emerse evidenti ed elevate condizioni di rischio per tutte le aree ove sono ubicati edifici ad uso residenziale o con presenza, anche saltuaria, di persone.

Analoghe condizioni di rischio elevato sono presenti lungo la viabilità comunale, sia lungo il versante idrografico destro sia lungo il fondovalle.

In particolare, va sottolineato come per la viabilità di fondovalle la pericolosità per fenomeni di caduta massi è evidentemente elevata, ma le condizioni di rischio risulterebbero basse in assenza di transiti.

I transiti però si verificano:

- → sporadicamente, per l'esecuzione da parte dei tecnici di sopralluoghi ed interventi di controllo e manutenzione in corrispondenza delle sorgenti;
- → con frequenza periodica da parte dei proprietari delle abitazioni presenti lungo il versante destro e nel settore terminale della forra;
- → con frequenza molto elevata, soprattutto in alcuni periodi dell'anno (indicativamente dalla primavera all'autunno) per la presenza di turisti e visitatori della forra della valle.

Nel momento in cui si ha lungo il fondovalle la presenza di persone, le condizioni di rischio divengono ovviamente elevate.

Considerando quanto siano diffusi i potenziali fenomeni di distacco e caduta massi (di volume da pochi decimetri cubi fino a diversi metri cubi) lungo tutto il tratto della valle esaminato, è evidente che non sia in alcun modo possibile prevedere interventi strutturali di protezione sistematica dai fenomeni di caduta massi, del fondovalle e del percorso turistico.

Interventi localizzati potranno essere progettati e realizzati (si veda il capitolo successivo) allo scopo di fornire protezione dai fenomeni di caduta massi per alcuni degli edifici ad uso residenziale presenti lungo il versante ed il fondovalle. In assenza di tali interventi, le ordinanze di sgombero eventualmente ancora vigenti non potranno essere revocate.

Rispetto alla presenza di visitatori lungo il fondovalle e la forra della Val Vertova, si segnala quanto segue.

→ Si ritiene opportuno in primo luogo stabilire un divieto di transito e presenza delle persone nei periodi in cui si verificano le casistiche descritte nel successivo Paragrafo 9.2, quindi in concomitanza con la previsione di eventi di rilevante entità per precipitazioni meteoriche e forte vento (per la presenza di blocchi appoggiati in condizioni precarie alla vegetazione presente, e in quanto il continuo movimento di alberi di alto fusto può favori ulteriori distacchi).

Pur essendo ovviamente possibile che si verifichino fenomeni di distacco e caduta di blocchi rocciosi anche in assenza di tali condizioni (ad esempio durante il periodo del disgelo), si ritiene che questa scelta possa comunque limitare la possibilità che le persone vengano coinvolte da tali fenomeni.

- → Per gli operatori che transitano lungo il fondovalle per le operazioni di controllo e manutenzione delle sorgenti, e per altri operatori che a vario titolo dovessero avere necessità di accedere alle zone a pericolosità elevata (che in ogni caso dovrebbero essere dotati di specifica copertura assicurativa), si consiglia quantomeno di segnalare formalmente alle società a cui appartengono i rischi a cui sono soggetti nell'operare nell'area, liberando nel contempo le amministrazioni comunali da ogni responsabilità.
- → Analoga segnalazione formale, corredata dalla richiesta di sottoscrivere una specifica liberatoria nei confronti delle amministrazioni comunali, andrebbe inviata ai proprietari di edifici o terreni per il cui accesso si debba transitare o permanere in aree ad elevata pericolosità.
- → Per quanto riguarda l'accesso dal fondovalle alle aree da parte dei turisti, attualmente regolamentato e consentito a pagamento, si dovrebbe anche vagliare la possibilità che, nel costo del biglietto di accesso, sia compresa una copertura assicurativa. In ogni caso, nelle more dell'emissione del biglietto, dovrà essere compresa della documentazione informativa relativa ai rischi connessi al transito ed alla permanenza nel fondovalle e nella forra, con dichiarazione esplicita di liberatoria in merito a responsabilità delle amministra-

zioni comunali.

→ Considerando che l'accesso alle aree ad elevata pericolosità può avvenire anche attraverso percorsi che non partano dall'accesso ordinario e regolamentato di fondovalle, andrà comunque predisposta lungo tutto il percorso opportuna cartellonistica (si veda la Tavola 13) che sancisca il rischio di caduta massi e che riporti specificamente le situazioni sopra citate, in cui vige il divieto di transito e permanenza. Tali informazioni potranno anche essere con maggior dettaglio specificate ed illustrate sul sito dei due comuni, dove potranno anche essere periodicamente aggiornati i periodi in cui sono vigenti i divieti di cui sopra.

Infine, rispetto all'opportunità di richiedere ai proprietari dei terreni lungo i versanti interventi di manutenzione forestale, oltre alle evidenti difficoltà connesse all'individuazione dei proprietari delle aree interessate dalle situazioni di instabilità presenti e manifeste, va sottolineato che interventi di manutenzione lungo i versanti possono essere eseguite esclusivamente previa la provvisoria chiusura al transito delle aree sottostanti e del fondovalle.

Può comunque essere opportuno sensibilizzare i proprietari ed i frequentatori dei sentieri e delle strade presenti lungo i versanti alla segnalazione, presso gli Uffici Tecnici dei due comuni, di situazioni di instabilità manifeste o potenziali, che potranno successivamente essere oggetto di sopralluoghi di verifica da parte di tecnici incaricati dai comuni.

Tutte le proposte di cui sopra è opportuno vengano sottoposte al vaglio ed al parere da parte di un legale esperto nella specifica tematica.

## 8. STIMA DI MASSIMA DEGLI INTERVENTI DI PROTEZIONE DAI FENOMENI DI CADUTA MASSI

Va in primo luogo premesso, come detto al termine del capitolo precedente, che non è in alcun modo possibile, soprattutto in quanto non ragionevole in termini di rapporto costi/benefici, prevedere interventi strutturali di protezione sistematica del fondovalle e del percorso turistico dai fenomeni di caduta massi.

Si indicano pertanto nel seguito gli interventi che sono ragionevolmente da prevedere a protezione di alcuni edifici e parti di strade comunali (si veda la Tavola 11), ed una stima parametrica dei costi di intervento.

| Tipologia                  | Dimensione       | Costo indicativo        |  |
|----------------------------|------------------|-------------------------|--|
| Barriera paramassi 1000 kJ | Lunghezza 60 ml  | 900 €/ml + spese tecni- |  |
| (n.1 in carta)             | Altezza 4m       | che + oneri             |  |
| Barriera paramassi 1000 kJ | Lunghezza 60 ml  | 900 €/ml + spese tecni- |  |
| (n.2 in carta)             | Altezza 4m       | che + oneri             |  |
| Barriera paramassi 1000 kJ | Lunghezza 200 ml | 900 €/ml + spese tecni- |  |
| (n.3 in carta)             | Altezza 4m       | che + oneri             |  |

# VERSANTE IDROGRAFICO DESTRO – COMUNE DI GAZZANIGA

#### VERSANTE IDROGRAFICO SINISTRO - COMUNE DI VERTOVA

| Tipologia                                                            | Dimensione          | Costo indicativo                       |  |
|----------------------------------------------------------------------|---------------------|----------------------------------------|--|
| Barriera paramassi 1000 kJ                                           | Lunghezza 50 ml     | 900 €/ml + spese tecni-                |  |
| (n.4 in carta)                                                       | Altezza 4m          | che + oneri                            |  |
| Barriera paramassi 1000 kJ                                           | Lunghezza 50 ml     | 900 €/ml + spese tecni-                |  |
| (n.5 in carta)                                                       | Altezza 4m          | che + oneri                            |  |
| Barriera paramassi 2000 kJ                                           | Lunghezza 50 ml     | 1.200 €/ml + spese tec-                |  |
| (n.6 in carta)                                                       | Altezza 4m          | niche + oneri                          |  |
| Legatura blocco                                                      |                     |                                        |  |
| (n.7 in carta)                                                       | A corpo             | 10.000 €                               |  |
| Consolidamento parete me-<br>diante chiodature e reti in<br>aderenza | Superficie 1.000 mq | 100 €/mq + spese tecni-<br>che + oneri |  |
| (n.v in carta)                                                       |                     |                                        |  |

Le tipologie schematiche di intervento sono riportate nella Tavola 12.

### 9. AREE A MAGGIOR RISCHIO - INFORMAZIONE ED ALLERTAMENTO

In primo luogo si ritiene utile sensibilizzare, attraverso specifiche comunicazioni scritte, i proprietari dei terreni e delle abitazioni, oltre che i frequentatori sistematici dei sentieri e delle strade presenti lungo i versanti perché provvedano alla segnalazione, presso gli Uffici Tecnici dei due comuni, di situazioni di instabilità manifeste o potenziali, che potranno successivamente essere oggetto di specifici sopralluoghi di verifica da parte di tecnici incaricati dai comuni.

In merito a quest'ultimo punto si considera di particolare importanza che i due comuni provvedano ad incaricare geologi di loro fiducia (se necessario in alcuni casi coadiuvati da guide alpine) per l'esecuzione di sopralluoghi in caso di evidenze/segnalazioni di fenomeni di caduta, lungo la viabilità secondaria e la rete sentieristica, in modo tale da verificare situazioni manifeste di caduta di materiale roccioso o l'evoluzione di situazioni di distacco potenziale.

I lavori di controllo e di manutenzione regolari assicurano la qualità e la sicurezza dei sentieri escursionistici. Tutti i sentieri escursionistici andrebbero ispezionati sul posto almeno una volta all'anno. Può inoltre essere necessario procedere a controlli più frequenti dei sentieri particolarmente frequentati, oltre che a seguito di eventi meteo particolarmente rilevanti. I sopralluoghi vanno effettuati da collaboratori locali debitamente formati, che controllano lo stato dei sentieri e della segnaletica e registrano contemporaneamente eventuali danni al tracciato.

## 9.1 INFORMAZIONI DA FORNIRE AI FREQUENTATORI

L'escursionismo è un'attività ricreativa svolta in ambiente naturale e, in quanto tale, comporta in primo luogo dei rischi meteorologici (temporali, nevicate, ghiaccio, vento e mutamenti atmosferici repentini) di cui sono responsabili gli utenti.

Allo stesso modo, fenomeni naturali imprevisti come la caduta di massi su tratti anche solitamente sicuri rientrano nei normali rischi della vita quotidiana.

Il livello di sicurezza dei sentieri dipende da numerosi fattori e, anche se i rischi naturali dovessero essere noti, non è possibile garantire una protezione assoluta. Un esempio sono i pericoli impliciti nei sentieri di montagna e, in misura ancora maggiore, in quelli alpini (ad es. caduta massi) che gli utenti sono tenuti a conoscere e accettare.

Alla luce di quanto sopra i soggetti responsabili dispongono di un notevole margine discrezionale e le misure predisposte sono sempre il risultato di un'attenta ponderazione dei rischi (compresi quelli impliciti), degli interessi delle parti (in particolare del rapporto costi-benefici) e dell'autoresponsabilità degli utenti. Le misure di sicurezza non sono infatti intese a eliminare tutti i possibili rischi, quanto piuttosto a circoscriverli a un livello accettabile e adatto alla categoria di sentiero, lasciando quelli residui alla responsabilità individuale degli escursionisti.

# 9.1.1 Proprietari di edifici e fondi

Ai proprietari di edifici o terreni per il cui accesso si debba transitare o permanere in aree ad elevata pericolosità, andrà inviata una comunicazione in cui si segnala che "l'area di proprietà e di transito è esposta a potenziali fenomeni di caduta massi e pertanto va considerata ad elevata pericolosità".

La comunicazione dovrà comprendere l'inibizione al transito lungo la viabilità secondo le tipologie di rischio naturale ed i livelli di allerta previsti dall'allertamento di Protezione Civile di Regione Lombardia, riportati oltre nel presente documento.

# 9.1.2 Tecnici e società

Per i tecnici che devono transitare lungo il fondovalle per le operazioni di controllo e manutenzione delle sorgenti, e per altri operatori che a vario titolo dovessero avere necessità di accedere alle zone a pericolosità elevata, andranno segnalati formalmente alle società di appartenenza i rischi a cui sono soggetti nell'operare nell'area, liberando nel contempo le amministrazioni comunali da ogni responsabilità. La segnalazione dovrà comprendere l'inibizione al transito (se non in caso di emergenze conclamate, come il ripristino di servizi essenziali) secondo le tipologie di rischio naturale ed i livelli di allerta previsti dall'allertamento di Protezione Civile di Regione Lombardia, riportati oltre nel presente documento.

# 9.1.3 Turisti ed escursionisti - Cartellonistica

Con riferimento alla tavola 13, si propone di installare la cartellonistica di seguito descritta.

# Cartellonistica sul sentiero di fondovalle

Oltre che specifiche indicazioni sul sito www.valvertova.it, si dovranno porre cartelli segnaletici almeno nelle posizioni sotto elencate.

- $\rightarrow$  Parcheggio e punto di partenza dei bus per l'accesso alla valle
- $\rightarrow$  Sbarra lungo la strada di fondovalle poco oltre Ca' Roset.

#### Escursionisti - Cartellonistica sui sentieri CAI

Andranno segnalati formalmente al CAI Bergamo i rischi a cui sono soggetti gli escursionisti che percorrono i sentieri.

- Si dovranno inoltre porre cartelli segnaletici almeno nelle posizioni sotto elencate.
- → Sentiero CAI n.527 Vertova -Bivacco Testa (escursionistico)
  - Cartello rivolto verso chi sale poco oltre Ca' Roset.

- Cartello rivolto verso chi scende poco a nord della piazzola delle sorgenti (prati del Merel).

- → Sentiero CAI n.529A Gaernai Bivacco Testa (escursionistico)
  - Cartello rivolto verso chi sale al bivio con il sentiero CAI n.527.
  - Cartello rivolto verso chi scende al Col d'Ultì.
- → Sentiero CAI n.516 Val Vertova Forca di Aviatico monte Poieto (escursionistico)

- Cartello rivolto verso chi sale al bivio con il sentiero CAI n.527.
- Cartello rivolto verso chi scende al guado del torrente Gru.
- → Sentiero CAI n.524 Val Vertova Forca di Aviatico monte Poieto (escursionistico)
  - Cartello rivolto verso chi sale alla località Il Roccolo.
  - Cartello rivolto verso chi scende all'inizio del versante esposto a nord del monte Cedrina.

#### Cartellonistica su altri sentieri e strade private

E' opportuno vengano posti cartelli anche sui sentieri comunali che dalla località Orezzo entrano a varie quote lungo il versante destro della Val Vertova, raggiungendo alcuni edifici posti lungo il versante stesso.

Analogo cartello andrà posto allo stacco del sentiero che risale il versante sinistro della valle dopo il bivio tra i sentieri CAI 527 e 529A.

#### Strada agro-silvo-pastorale per la Val di Gru

Si dovranno inoltre porre cartelli segnaletici almeno nelle posizioni sotto elencate.

- $\rightarrow$  Cartello rivolto verso chi sale in corrispondenza della sbarra posta lungo la strada in ingresso al versante destro della valle Vertova.
- → Cartello rivolto verso chi scende in corrispondenza dell'inizio dell'area a pericolosità elevata.

Ovviamente l'ubicazione della cartellonistica prevista (si veda la tavola grafica allegata alla presente nota) è funzione dell'area oggetto di studio, anche se esternamente a questa potrebbero essere presenti ulteriori situazioni di potenziale pericolosità.

#### 9.2 ALLERTAMENTO ED INIBIZIONE AL TRANSITO

Con riferimento alle tipologie di rischio naturale previste dall'allertamento di Protezione Civile di Regione Lombardia, verrà inibito al transito, attraverso ordinanza sindacale, il percorso turistico di fondovalle e la viabilità comunale lungo i versanti per le casistiche seguenti.



Quanto sopra in corrispondenza di livelli di allerta individuati dai codici colore arancione e rosso.

| CRITICITÀ               | DESCRIZIONE                                                                                                                                                                                           |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARANCIONE<br>(moderata) | Sono previsti fenomeni naturali che non raggiungono valori estremi,<br>ma che possono interessare un'importante porzione del territorio o<br>dare luogo a danni ed a rischi estesi per la popolazione |
| ROSSO<br>(elevata)      | Sono previsti fenomeni naturali suscettibili di raggiungere valori<br>estremi, che possono dare luogo a danni e rischi anche gravi per<br>la popolazione e interessare in modo diffuso il territorio  |

Nel caso si verifichino fenomeni di caduta di massi, si dovrà indicare nella cartellonistica che le persone presenti lungo il percorso di fondovalle lascino il tratto della forra e si portino all'esterno di essa, in corrispondenza della sbarra lungo la strada di fondovalle poco oltre Ca' Roset.

Le ordinanze di sgombero eventualmente ancora vigenti non potranno essere revocate, ma andranno confermate fino all'esecuzione ed al collaudo di interventi strutturali di protezione dalla caduta massi.

Infine, con riferimento ai contenuti del "Piano di Protezione Civile speditivo per la gestione delle emergenze in Valle Vertova" (maggio 2022), si fa presente che il piano prevede (Tavola 1) tre zone individuate come "Punti di ritrovo", connessi a fasi di emergenza per pericolosità idraulica del torrente Vertova.

Due di tali aree ricadono all'interno della forra della Val Vertova e, rispetto ai contenuti del presente documento, non sono compatibili rispetto alle condizioni di pericolosità da caduta massi.

Pertanto, rispetto a situazioni di effettiva emergenza idraulica che si dovessero verificare possono comunque costituire un riferimento per le persone eventualmente presenti nel fondo valle.

Si ricorda d'altra parte che il presente documento prevede situazioni di allertamento ed inibizione al transito, che comprendono anche il rischio idraulico, in condizioni di livelli di allerta arancione e rosso, e quindi in tali condizioni non si dovrebbe in ogni caso registrare la presenza di escursionisti lungo il fondovalle.

#### 10. ALLEGATO 1: ANALISI DELLA DINAMICA DI CADUTA MASSI

Il moto di caduta di un blocco lungo una scarpata rocciosa dipende da numerosi fattori che non è facile esprimere numericamente. Le traiettorie dei blocchi dipendono dalla geometria della scarpata, dalla forma del blocco in caduta e dalla sua velocità iniziale al momento del distacco dal pendio, ed inoltre dall'entità dell'energia dissipata per effetto degli urti durante la caduta. I blocchi in caduta possono, infatti, scivolare, rotolare o rimbalzare a valle a seconda della loro forma, appiattita o arrotondata, e della inclinazione del pendio.

L'energia dissipata per effetto degli urti è in genere diversa al variare delle caratteristiche del moto e dipende dalle caratteristiche meccaniche del blocco e dai materiali presenti lungo la scarpata (roccia, terreno, vegetazione) che si oppongono in misura differente al moto dei blocchi.

Nella realtà, tuttavia, è praticamente impossibile determinare puntualmente il profilo di un pendio ed individuare la forma dei diversi blocchi che potrebbero distaccarsi. Inoltre la geometria del pendio e la natura dei materiali affioranti subiscono nel tempo modifiche, anche sensibili, per effetto, dell'alterazione della roccia, per l'accumulo di detriti nelle zone meno acclivi e per lo sviluppo della vegetazione.

Infine, diviene praticamente impossibile modellare il moto di caduta dei blocchi nei casi in cui questi si frantumino per effetto degli urti, né è possibile individuare le zone del pendi in cui si verifica la frantumazione.

Per i motivi sopra esposti si può affermare che un calcolo preciso della caduta di masse rocciose risulta praticamente impossibile. Utilizzando tuttavia criteri probabilistiti e statistici sviluppati sulla base di un'ampia sperimentazione numerica e tarati sulla base di una vasta casistica di dati sperimentali ottenuti da prove in sito sono stati messi a punto programmi di calcolo che consentono di ottenere risultati soddisfacenti dal punto di vista ingegneristico ai fini della previsione della dinamica di caduta (in termini di traiettorie, velocità ed energie) e della progettazione delle opere di protezione.

Nel caso in esame l'analisi è stata effettuata mediante l'utilizzo del codice di calcolo "Roc-Fall" distribuito dalla RocScience Inc. di Toronto.

#### **10.1 CRITERI DI CALCOLO UTILIZZATI DAL CODICE DI CALCOLO ROCFALL**

RocFall utilizza un'analisi delle particelle per calcolare il movimento di un masso. L'analisi particellare si suddivide in tre sezioni ben distinte tra loro: l'algoritmo particellare, l'algoritmo di proiezione e l'algoritmo di scorrimento.

L'<u>algoritmo particellare</u> garantisce la validità di tutti i parametri di simulazione, definisce le condizioni iniziali per la preparazione degli algoritmi di proiezione e di scorrimento per poi dare inizio all'algoritmo di scorrimento. Il resto della simulazione (fino all'arresto del masso) riguarda o l'algoritmo di proiezione oppure l'algoritmo di scorrimento.

L'algoritmo di proiezione serve a calcolare il movimento della roccia mentre viag-

gia attraverso l'aria, rimbalzando da un punto all'altro del pendio.

L'<u>algoritmo di scorrimento</u> serve a calcolare il movimento del masso mentre è in contatto con il pendio. Poiché la velocità della roccia deve essere molto bassa prima che la roccia abbandoni l'algoritmo di proiezione, gran parte della simulazione è incentrata sul logaritmo di proiezione.

Ogni masso è modellato come una particella, che può essere vista come un cerchio infinitesimale, dal momento che le dimensioni della roccia non si ripercuotono affatto sull'algoritmo in sé, tuttavia le equazioni utilizzate all'interno dell'algoritmo di scorrimento implicano una forma circolare. Poiché si presume che ogni masso sia infinitamente piccolo, non sussiste nessuna interazione tra le particelle, ma soltanto tra i segmenti del pendio e le barriere. E poiché non sussiste alcuna interazione tra le particelle, ogni singolo masso si comporta come se fosse l'unico presente nella simulazione.

Benché i massi siano ritenuti privi di ogni dimensione (ai fini dell'interazione con altre rocce, con il pendio o le barriere), si ritiene che abbiano una massa. La massa non è utilizzata in nessuna delle equazioni utilizzate ai fini del calcolo del movimento del masso ma solo per calcolare l'energia cinetica al momento della creazione dei grafici e della presentazione dei risultati. La massa viene determinata all'inizio della simulazione e rimane costante per tutta la durata della simulazione. I massi non possono rompersi o frammentarsi durante la simulazione. La massa può essere specificata attraverso un valore costante o attraverso campioni scelti da una distribuzione casuale.

La resistenza dovuta all'attrito dell'aria non viene presa in considerazione in nessuna delle equazioni dal momento che si presume che i massi siano abbastanza massicci e che si spostino a velocità abbastanza basse. Considerare la resistenza dell'aria renderebbe l'analisi fin troppo complicata e non avrebbe pressoché nessun effetto sull'esito della simulazione.

La pendenza è modellata come un gruppo continuo di segmenti di linea retta collegati tra loro alle estremità. Affinché possa essere considerato valido, un segmento del pendio non può incontrare nessun altro segmento della pendenza e i vertici non possono essere coincidenti, altrimenti la geometria è libera. Le barriere e i data collector sono modellati come singoli segmenti di una linea retta.

#### **10.1.1Algoritmo di proiezione**

L'algoritmo di proiezione parte dal presupposto secondo il quale il masso abbia una certa velocità (seppur minima) che lo faccia viaggiare attraverso l'aria dal punto in cui si trova a un altro punto in cui colpirà un secondo oggetto (che può trovarsi posizionato lungo il medesimo oggetto). A causa della forza di gravità la traiettoria descritta dal masso nell'aria sarà necessariamente una parabola.

L'algoritmo di proiezione serve essenzialmente a individuare il punto di intersezione tra una parabola (il tragitto compiuto dalla roccia) e un segmento lineare (un tratto del pendio oppure una barriera). Una volta trovato il punto di intersezione, si provvede a calcolare l'impatto in funzione dei coefficienti di restituzione. Se a seguito dell'impatto il masso si muove ancora abbastanza rapidamente il processo ricomincia daccapo, al fine di cercare il punto d'intersezione successivo. In questo contesto per "velocità sufficiente" si intende la velocità minima ( $V_{MIN}$ ) specificata dall'utente al momento dell'avvio della simulazione. La velocità minima definisce il punto di transizione tra lo stato di proiezione e lo stato in cui il masso si muove troppo lentamente per essere considerato alla stregua di un proiettile per essere quindi considerato in fase di rotolamento, scorrimento o arresto. L'esito della simulazione e il tempo richiesto dalla stessa non sono particolarmente sensibili alle variazioni della  $V_{MIN}$ .

Una volta determinata l'intersezione corretta e calcolate le velocità, tutti i collettori di dati vengono verificati rispetto all'intersezione con la parabola (secondo una procedura simile a quella seguita per il controllo dei segmenti della pendenza). Tutti i collettori di dati con valore parametrico (ovvero il valore di t) inferiore al valore dell'intersezione attuale vengono informati circa la traiettoria del masso. Inoltre i collettori di dati registrano la posizione, la velocità e l'energia cinetica del masso nel momento in cui supera i collettori. Si procede quindi a calcolare la velocità della roccia, per poi confrontarla con V<sub>MIN</sub>. Se maggiore di V<sub>MIN</sub> il processo ricomincia da capo allo scopo di trovare il punto d'intersezione successivo.

#### 10.1.2Algoritmo di scorrimento

L'algoritmo di scorrimento viene utilizzato per calcolare il movimento del masso dopo l'abbandono dell'algoritmo di proiezione. I massi possono scorrere su qualsiasi segmento del pendio e su ogni barriera. Ai fini dell'algoritmo di scorrimento il segmento del pendio o la barriera su cui scorre il masso consistono in un unico segmento di linea retta con proprietà di angolo di inclinazione ( $\Theta$ ) e angolo di attrito ( $\phi$ ). L'angolo di attrito può essere specificato attraverso una costante oppure scelto a campione da una distribuzione casuale.

Il masso può iniziare a scorrere in ogni punto del segmento e avere un'accelerazione iniziale rivolta al tratto ascendente oppure discendente. Le equazioni considerano esclusivamente la componente di velocità tangenziale alla pendenza.

# 10.1.2.1Scorrimento lungo il tratto discendente

Se l'accelerazione iniziale del masso è diretta verso il tratto discendente (oppure è pari a zero), il comportamento del masso dipende dalle magnitudo relative dell'angolo di attrito ( $\phi$ ) e dall'angolo d'inclinazione ( $\Theta$ ).

 $\phi = \Theta$  Se l'angolo di inclinazione ha un valore pari all'angolo di attrito, la forza motrice (gravità) è pari alla forza di resistenza (attrito) e il masso avanzerà in discesa a partire dal tratto finale del segmento con una velocità pari all'accelerazione iniziale (ovvero V<sub>EXIT</sub> = V<sub>0</sub>). Sussiste tuttavia un caso specifico in cui V<sub>0</sub>=0: in tal caso il masso non si muove e la simulazione può ritenersi conclusa.

 $\phi > \Theta$  Se l'angolo di inclinazione è superiore all'angolo di attrito, la forza motrice è maggiore della resistenza e il masso avanzerà in discesa a partire dal tratto finale del segmento con una velocità maggiore.

## 10.1.2.2Scorrimento lungo un tratto in risalita

In caso di scorrimento in salita l'attrito e la forza di gravità rallentano la velocità della particella. Partendo dal presupposto che un segmento si estende all'infinito, primo o poi la particella si fermerà. La distanza d'arresto viene calcolata attraverso l'equazione 420; si procede inoltre al calcolo della distanza che separa il masso dalla sua posizione iniziale all'estremo in salita del segmento. Se la distanza d'arresto è superiore alla distanza che separa il masso dall'estremo del segmento, la roccia scivolerà via dall'estremo del segmento ed in questo caso si ricorre all'equazione 19 per calcolare la velocità d'uscita. Se invece la distanza d'arresto è inferiore alla distanza che separa il masso dall'estremo del segmento, la roccia si arresterà e la simulazione può ritenersi conclusa.

Se il masso scorre verso l'alto e si ferma, viene incluso nell'algoritmo di scorrimento lungo il tratto discendente. Se l'inclinazione del segmento è sufficiente (ovvero  $\Theta > \phi$ ) il masso scorrerà a partire dall'estremo inferiore del segmento. Se invece l'inclinazione non è sufficiente la posizione d'arresto del masso (dopo lo scorrimento in salita) viene considerata quale posizione finale e la simulazione viene interrotta.

#### **10.2 R**ISULTATI DELLE SIMULAZIONI

L'analisi RocFall è stata eseguita su 8 sezioni, le cui tracce sono rappresentate in Figura 33.



Figura 33: Tracce delle sezioni sulle quali è stata applicata l'analisi di caduta massi.

In corrispondenza delle otto sezioni esaminate, in primo luogo, si sono riportate le caratteristiche del terreno in corrispondenza dei vari tratti. Il programma propone differenti tipi di terreno con i relativi valori dei coefficienti di restituzione normale e tangenziale e l'angolo di attrito e la rugosità con la relativa variazione standard, tali parametri possono comunque essere variati dall'utente in funzione dell'esperienza acquisita.

Per ciascuna delle sezioni si è simulato il distacco di 1000 massi. Sulla base dei dati ottenuti tramite i sopralluoghi di terreno, le simulazioni sono state fatte nell'ipotesi di distacco di blocchi di massa pari a 6500 kg per le sezioni da 1 a 6 e di massa pari a 9100 kg per le sezioni 7 e 8.

Per ciascuna sezione si riporta nelle pagine seguenti il diagramma delle altezze di caduta (massima e media), il diagramma della distanza di arresto e della energia cinetica totale e il diagramma con le traiettorie di caduta. In quest'ultimo sono stati indicati gli elementi significativi presenti (strada agrosilvopastorale, Tribulina Zatel, Casa Scout ed alcune altre località).

#### **SEZIONE 1**

#### Sezione 1: Dati di ingresso

ROCALL SAIT Page 1 of 4

**RocFall Analysis Information** 

#### **Project Summary**

File Name Sezione 1.fal5 File Version 5.017

Date Created 10/02/2023, 10:14:18

#### Project Settings

#### General Settings:

| ieral Settings. |                                      |
|-----------------|--------------------------------------|
| Engine          | Lump Mass                            |
| Units           | Metric (m, kg, kJ)                   |
| Rock Throw Mode | Number of rocks controlled by seeder |
|                 |                                      |

#### Engine Conditions:

| Friction Angle            | Calculate friction angle from Rt |
|---------------------------|----------------------------------|
| Consider Angular Velocity | Yes                              |
| Maximum time per rock     | 5s                               |
| Maximum steps per rock    | 10000                            |
| Normal velocity cutoff    | 0.1m/s                           |
| Stopped velocity cutoff   | 0.1m/s                           |
| Maximum timestep          | 0.01s                            |
|                           |                                  |

#### Random Number Generation:

Sampling Method Monte-Carlo Random Seed Pseudo-random seed: 12345234

#### Slope Geometry

| Vertex | х               | Y       | X Std.Dev. | Y Std.Dev. |
|--------|-----------------|---------|------------|------------|
| 1      | 0               | 806.328 | 0.5        | 0.5        |
| 2      | 17              | 805     | 0.5        | 0.5        |
| 3      | 25.029          | 800     | 0.5        | 0.5        |
| 4      | 30.0348         | 796.888 | 0.5        | 0.5        |
| 5      | 35.0406         | 791.965 | 0.5        | 0.5        |
| 6      | 40.0465         | 786.575 | 0.5        | 0.5        |
| 7      | 45.0523         | 780.833 | 0.5        | 0.5        |
| 8      | 50.0581         | 775.022 | 0.5        | 0.5        |
| 9      | 55.0639         | 769.084 | 0.5        | 0.5        |
| 10     | 60.0697         | 763.139 | 0.5        | 0.5        |
| 11     | 65.0755         | 757.166 | 0.5        | 0.5        |
| 12     | 70.0813         | 751.178 | 0.5        | 0.5        |
| 13     | 75.0871         | 745.161 | 0.5        | 0.5        |
| 14     | 80.0929         | 739.271 | 0.5        | 0.5        |
| 15     | 85.0987         | 734.289 | 0.5        | 0.5        |
| 16     | 90.1045         | 729.298 | 0.5        | 0.5        |
| 17     | 95.1103         | 724.362 | 0.5        | 0.5        |
| 18     | 100.116         | 719.376 | 0.5        | 0.5        |
| 19     | 105.122         | 714.625 | 0.5        | 0.5        |
| 20     | 110.128         | 710.137 | 0.5        | 0.5        |
| 21     | 115.134         | 704.559 | 0.5        | 0.5        |
| 22     | 120.139         | 699.601 | 0.5        | 0.5        |
| 23     | 125.145         | 697.394 | 0.5        | 0.5        |
| 24     | 130.151         | 695.125 | 0.5        | 0.5        |
| 25     | 135.157         | 692.815 | 0.5        | 0.5        |
| 26     | 140.163         | 690.098 | 0.5        | 0.5        |
| 27     | 145.168         | 687.797 | 0.5        | 0.5        |
| 28     | 150.174         | 685.473 | 0.5        | 0.5        |
| 29     | 155.18          | 683.111 | 0.5        | 0.5        |
| 30     | 160.186         | 680.699 | 0.5        | 0.5        |
| 31     | 165.192         | 678.433 | 0.5        | 0.5        |
|        | 1359760 HISTORY |         |            |            |

Sezione 1.fal5

10/02/2023, 10:14:18

| 1 | TOIS. | ROCFALL | 5.017   |     |     |
|---|-------|---------|---------|-----|-----|
| 1 | SI    | siend   | e       |     |     |
|   | 33    | 175.203 | 673.825 | 0.5 | 0.5 |
|   | 34    | 180.209 | 671.391 | 0.5 | 0.5 |
|   | 35    | 185.215 | 668.894 | 0.5 | 0.5 |
|   | 36    | 190.221 | 666.268 | 0.5 | 0.5 |
|   | 37    | 200 232 | 660 839 | 0.5 | 0.5 |
|   | 39    | 205.232 | 658.194 | 0.5 | 0.5 |
|   | 40    | 210.244 | 655.583 | 0.5 | 0.5 |
|   | 41    | 215.25  | 652.972 | 0.5 | 0.5 |
|   | 42    | 220.256 | 650.393 | 0.5 | 0.5 |
|   | 43    | 225.261 | 647.856 | 0.5 | 0.5 |
|   | 44    | 230.267 | 645.328 | 0.5 | 0.5 |
|   | 45    | 233.273 | 640 295 | 0.5 | 0.5 |
|   | 47    | 245.285 | 636.527 | 0.5 | 0.5 |
|   | 48    | 250.29  | 632.513 | 0.5 | 0.5 |
|   | 49    | 255.296 | 628.458 | 0.5 | 0.5 |
|   | 50    | 260.302 | 624.333 | 0.5 | 0.5 |
|   | 51    | 265.308 | 620.224 | 0.5 | 0.5 |
|   | 52    | 270.314 | 611 719 | 0.5 | 0.5 |
|   | 54    | 280.325 | 608.759 | 0.5 | 0.5 |
|   | 55    | 285.331 | 606.682 | 0.5 | 0.5 |
|   | 56    | 290.337 | 604.579 | 0.5 | 0.5 |
|   | 57    | 295.343 | 602.479 | 0.5 | 0.5 |
|   | 58    | 300.348 | 600.403 | 0.5 | 0.5 |
|   | 59    | 305.354 | 599.012 | 0.5 | 0.5 |
|   | 61    | 315,366 | 595.042 | 0.5 | 0.5 |
|   | 62    | 320.372 | 593.07  | 0.5 | 0.5 |
|   | 63    | 325.377 | 591.116 | 0.5 | 0.5 |
|   | 64    | 330.383 | 589.187 | 0.5 | 0.5 |
|   | 65    | 335.389 | 587.231 | 0.5 | 0.5 |
|   | 66    | 340.395 | 585.277 | 0.5 | 0.5 |
|   | 68    | 350.406 | 581.45  | 0.5 | 0.5 |
|   | 69    | 355.412 | 579.194 | 0.5 | 0.5 |
|   | 70    | 360.418 | 575.581 | 0.5 | 0.5 |
|   | 71    | 365.424 | 572.27  | 0.5 | 0.5 |
|   | 72    | 370.43  | 568.984 | 0.5 | 0.5 |
|   | 73    | 3/5.430 | 564.529 | 0.5 | 0.5 |
|   | 75    | 385.447 | 555.295 | 0.5 | 0.5 |
|   | 76    | 390.453 | 550.655 | 0.5 | 0.5 |
|   | 77    | 395.459 | 547.365 | 0.5 | 0.5 |
|   | 78    | 400.465 | 544.296 | 0.5 | 0.5 |
|   | 79    | 405.47  | 541.242 | 0.5 | 0.5 |
|   | 80    | 410.4/6 | 538.151 | 0.5 | 0.5 |
|   | 82    | 415.482 | 531 925 | 0.5 | 0.5 |
|   | 83    | 425.494 | 528.802 | 0.5 | 0.5 |
|   | 84    | 430.499 | 525.63  | 0.5 | 0.5 |
|   | 85    | 435.505 | 522.482 | 0.5 | 0.5 |
|   | 86    | 440.511 | 519.323 | 0.5 | 0.5 |
|   | 8/    | 445.517 | 516.043 | 0.5 | 0.5 |
|   | 89    | 455.528 | 509.609 | 0.5 | 0.5 |
|   | 90    | 460.534 | 506.4   | 0.5 | 0.5 |
|   | 91    | 465.54  | 503.219 | 0.5 | 0.5 |
|   | 92    | 470.546 | 500.571 | 0.5 | 0.5 |
|   | 93    | 475.552 | 497.595 | 0.5 | 0.5 |
|   | 94    | 480.557 | 494.661 | 0.5 | 0.5 |
|   | 96    | 400.503 | 491.08  | 0.5 | 0.5 |
|   | 97    | 495.575 | 485.776 | 0.5 | 0.5 |
|   | 98    | 500.581 | 482.804 | 0.5 | 0.5 |
|   | 99    | 505.587 | 479.844 | 0.5 | 0.5 |
|   | 100   | 510.592 | 476.895 | 0.5 | 0.5 |
|   | 101   | 515.598 | 473.988 | 0.5 | 0.5 |

Sezione 1.fal5

10/02/2023, 10:14:18

# ROCFALL 5.017

| 102 | 520.604 | 471.131 | 0.5 | 0.5 |
|-----|---------|---------|-----|-----|
| 103 | 525.61  | 469.275 | 0.5 | 0.5 |
| 104 | 530.616 | 468.088 | 0.5 | 0.5 |
| 105 | 535.621 | 466.938 | 0.5 | 0.5 |
| 106 | 540.627 | 465.821 | 0.5 | 0.5 |
| 107 | 545.633 | 464.736 | 0.5 | 0.5 |
| 108 | 550.639 | 463.688 | 0.5 | 0.5 |
| 109 | 555.645 | 462.676 | 0.5 | 0.5 |
| 110 | 560.65  | 462.862 | 0.5 | 0.5 |
| 111 | 565.656 | 465.388 | 0.5 | 0.5 |
| 112 | 570.662 | 468.834 | 0.5 | 0.5 |
| 113 | 575.668 | 471.729 | 0.5 | 0.5 |
| 114 | 580.674 | 471.741 | 0.5 | 0.5 |
| 115 | 585.679 | 480.842 | 0.5 | 0.5 |
| 116 | 590.685 | 483.738 | 0.5 | 0.5 |
| 117 | 595 691 | 486 791 | 0.5 | 0.5 |

#### Slope Material Assignment

| Material          | From Vertex | To Vertex |
|-------------------|-------------|-----------|
| Detrito con bosco | 1           | 3         |
| Roccia            | 3           | 14        |
| Detrito con bosco | 14          | 28        |
| Detrito con prato | 28          | 39        |
| Detrito con bosco | 39          | 56        |
| Detrito con prato | 56          | 76        |
| Detrito con bosco | 76          | 105       |
| Depositi in alveo | 105         | 111       |
| Detrito con bosco | 111         | 117       |

#### **Material Properties**

# Roccia

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Ma |
|------------------------|---------|--------------|----------|----------|---------|
| Normal Restitution     | 0.5     | None         |          |          |         |
| Tangential Restitution | 0.88    | None         |          |          |         |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |         |
| Slope Roughness (°)    |         | None         |          |          |         |

#### Detrito con bosco

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.32    | None         |          |          |          |
| Tangential Restitution | 0.82    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

#### Detrito con prato

| "Detrito con prato" Pr | opertie | s            |          |          |          |
|------------------------|---------|--------------|----------|----------|----------|
|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution     | 0.3     | None         |          |          |          |
| Tangential Restitution | 0.8     | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

#### Depositi in alveo

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.33    | None         |          |          |          |
| Tangential Restitution | 0.85    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

Sezione 1.fal5

10/02/2023, 10:14:18

106

Page 3 of 4

| Tasience                  |        |                |          |          |          |
|---------------------------|--------|----------------|----------|----------|----------|
| eeders                    |        |                |          |          |          |
| eeder 1                   |        |                |          |          |          |
| Seeder Properties         |        |                |          |          |          |
| Name                      | Seeder | r 1            |          |          |          |
| Location                  | (30.03 | 48, 796.888)   |          |          |          |
|                           |        |                |          |          |          |
| Rocks to Throw            |        |                |          |          |          |
| Number of Rocks           | 1000 F | Per Rock Type  |          |          |          |
| Rock Types                | Defaul | t Rock (Sphere | 2)       |          |          |
|                           |        |                |          |          |          |
| Initial Conditions        |        |                |          |          |          |
|                           | Mean   | Distribution   | Std.Dev. | Rel. Min | Rel. Max |
| Horizontal Velocity (m/s) | 0.2    | None           |          |          |          |
| Vertical Velocity (m/s)   | 0.2    | None           |          |          |          |
| Rotational Velocity (°/s) | 0      | None           |          |          |          |
| Initial Rotation (°/s)    | 0      | Uniform        |          | 0        | 360      |
|                           |        |                |          |          |          |
| lock Types                |        |                |          |          |          |
|                           |        |                |          |          |          |

| Properties |                     |                      |          |          |          |
|------------|---------------------|----------------------|----------|----------|----------|
| Name       | Defaul              | t Rock (Sphere       | :)       |          |          |
| Color      |                     |                      |          |          |          |
|            |                     |                      |          |          |          |
|            | Mean                | Distribution         | Std.Dev. | Rel. Min | Rel. Max |
| Mass (kg)  | <b>Mean</b><br>6500 | Distribution<br>None | Std.Dev. | Rel. Min | Rel. Max |

Sezione 1.fal5

10/02/2023, 10:14:18








Sezione 1: Distanza di arresto



Sezione 1: Energia cinetica totale (valore medio)







### **SEZIONE 2**

### Sezione 2: Dati di ingresso

| ROCFALL SOLT | Page 1 of 4 |
|--------------|-------------|
|              |             |

**RocFall Analysis Information** 

### **Project Summary**

File Name Sezione 2.fal5 File Version 5.017

Date Created 10/02/2023, 18:52:33

### Project Settings General Settings:

| er | ieral settings: |                                      |
|----|-----------------|--------------------------------------|
|    | Engine          | Lump Mass                            |
|    | Units           | Metric (m, kg, kJ)                   |
|    | Rock Throw Mode | Number of rocks controlled by seeder |
|    |                 |                                      |

### Engine Conditions:

| Friction Angle            | Calculate friction angle from Rt |  |  |
|---------------------------|----------------------------------|--|--|
| Consider Angular Velocity | Yes                              |  |  |
| Maximum time per rock     | 5s                               |  |  |
| Maximum steps per rock    | 10000                            |  |  |
| Normal velocity cutoff    | 0.1m/s                           |  |  |
| Stopped velocity cutoff   | 0.1m/s                           |  |  |
| Maximum timestep          | 0.01s                            |  |  |
|                           |                                  |  |  |

#### Random Number Generation:

Sampling Method Monte-Carlo Random Seed Pseudo-random seed: 12345234

### Slope Geometry

| Vertex | х       | Y       | X Std.Dev. | Y Std.Dev. |
|--------|---------|---------|------------|------------|
| 1      | 0       | 800     | 0.5        | 0.5        |
| 2      | 10      | 805     | 0.5        | 0.5        |
| 3      | 30.5    | 805     | 0.5        | 0.5        |
| 4      | 35.5252 | 798.803 | 0.5        | 0.5        |
| 5      | 40.6002 | 796.194 | 0.5        | 0.5        |
| 6      | 45.6752 | 793.492 | 0.5        | 0.5        |
| 7      | 50.7502 | 790.737 | 0.5        | 0.5        |
| 8      | 55.8253 | 788.15  | 0.5        | 0.5        |
| 9      | 60.9003 | 785.522 | 0.5        | 0.5        |
| 10     | 65.9753 | 781.919 | 0.5        | 0.5        |
| 11     | 71.0503 | 779.245 | 0.5        | 0.5        |
| 12     | 76.1254 | 776.667 | 0.5        | 0.5        |
| 13     | 81.2004 | 774.041 | 0.5        | 0.5        |
| 14     | 86.2754 | 771.414 | 0.5        | 0.5        |
| 15     | 91.3504 | 768.071 | 0.5        | 0.5        |
| 16     | 96.4255 | 761.711 | 0.5        | 0.5        |
| 17     | 101.5   | 757.523 | 0.5        | 0.5        |
| 18     | 106.576 | 753.345 | 0.5        | 0.5        |
| 19     | 111.651 | 749.116 | 0.5        | 0.5        |
| 20     | 116.726 | 744.738 | 0.5        | 0.5        |
| 21     | 121.801 | 740.324 | 0.5        | 0.5        |
| 22     | 126.876 | 734.56  | 0.5        | 0.5        |
| 23     | 131.951 | 730.45  | 0.5        | 0.5        |
| 24     | 137.026 | 726.372 | 0.5        | 0.5        |
| 25     | 142.101 | 722.307 | 0.5        | 0.5        |
| 26     | 147.176 | 718.281 | 0.5        | 0.5        |
| 27     | 152.251 | 714.208 | 0.5        | 0.5        |
| 28     | 157.326 | 710.132 | 0.5        | 0.5        |
| 29     | 162.401 | 704.314 | 0.5        | 0.5        |
| 30     | 167.476 | 700.209 | 0.5        | 0.5        |
| 31     | 172.551 | 696.084 | 0.5        | 0.5        |
| 32     | 177.626 | 692.074 | 0.5        | 0.5        |

Sezione 2.fal5

10/02/2023, 18:52:33

| (a) (a)                    | RUCHALL                                  | 5.017                        |                   |                   |
|----------------------------|------------------------------------------|------------------------------|-------------------|-------------------|
| 3                          | siend                                    | e                            |                   |                   |
| 33                         | 182 701                                  | 688 193                      | 0.5               | 0.5.1             |
| 34                         | 187 776                                  | 684 423                      | 0.5               | 0.5               |
| 35                         | 192 851                                  | 678 824                      | 0.5               | 0.5               |
| 36                         | 197 926                                  | 675 088                      | 0.5               | 0.5               |
| 37                         | 203 001                                  | 671 386                      | 0.5               | 0.5               |
| 20                         | 209.001                                  | 667.066                      | 0.5               | 0.5               |
| 30                         | 213 151                                  | 662 316                      | 0.5               | 0.5               |
| 40                         | 210.101                                  | 657 549                      | 0.5               | 0.5               |
| 40                         | 218.220                                  | 652 710                      | 0.5               | 0.5               |
| 41                         | 223.301                                  | GAE 477                      | 0.5               | 0.5               |
| 42                         | 220.370                                  | 640 611                      | 0.5               | 0.5               |
| 43                         | 233.431                                  | 638.025                      | 0.5               | 0.5               |
| 44                         | 230.320                                  | 036.023                      | 0.5               | 0.5               |
| 45                         | 243.001                                  | 633.783                      | 0.5               | 0.5               |
| 40                         | 246.070                                  | 621 274                      | 0.5               | 0.5               |
| 47                         | 253./51                                  | 631.274                      | 0.5               | 0.5               |
| 48                         | 258.826                                  | 627.906                      | 0.5               | 0.5               |
| 49                         | 263.901                                  | 625.433                      | 0.5               | 0.5               |
| 50                         | 268.976                                  | 622.948                      | 0.5               | 0.5               |
| 51                         | 274.051                                  | 620.437                      | 0.5               | 0.5               |
| 52                         | 279.126                                  | 617.88                       | 0.5               | 0.5               |
| 53                         | 284.201                                  | 615.3                        | 0.5               | 0.5               |
| 54                         | 289.276                                  | 611.851                      | 0.5               | 0.5               |
| 55                         | 294.351                                  | 609.247                      | 0.5               | 0.5               |
| 56                         | 299.426                                  | 606.423                      | 0.5               | 0.5               |
| 57                         | 304.501                                  | 603.661                      | 0.5               | 0.5               |
| 58                         | 309.577                                  | 600.98                       | 0.5               | 0.5               |
| 59                         | 314.652                                  | 598.62                       | 0.5               | 0.5               |
| 60                         | 319.727                                  | 596.418                      | 0.5               | 0.5               |
| 61                         | 324.802                                  | 593.5                        | 0.5               | 0.5               |
| 62                         | 329.877                                  | 591.151                      | 0.5               | 0.5               |
| 63                         | 334.952                                  | 589.083                      | 0.5               | 0.5               |
| 64                         | 340.027                                  | 585.068                      | 0.5               | 0.5               |
| 65                         | 345.102                                  | 582.906                      | 0.5               | 0.5               |
| 66                         | 350.177                                  | 580.664                      | 0.5               | 0.5               |
| 67                         | 355.252                                  | 578.592                      | 0.5               | 0.5               |
| 68                         | 360.327                                  | 576.489                      | 0.5               | 0.5               |
| 69                         | 365.402                                  | 574.339                      | 0.5               | 0.5               |
| 70                         | 370.477                                  | 572.167                      | 0.5               | 0.5               |
| 71                         | 375.552                                  | 569.997                      | 0.5               | 0.5               |
| 72                         | 380.627                                  | 567.63                       | 0.5               | 0.5               |
| 73                         | 385.702                                  | 565.364                      | 0.5               | 0.5               |
| 74                         | 390.777                                  | 562.726                      | 0.5               | 0.5               |
| 75                         | 395.852                                  | 560.65                       | 0.5               | 0.5               |
| 76                         | 400.927                                  | 558.545                      | 0.5               | 0.5               |
| 77                         | 406.002                                  | 556.427                      | 0.5               | 0.5               |
| 78                         | 411.077                                  | 554.31                       | 0.5               | 0.5               |
| 79                         | 416.152                                  | 552.204                      | 0.5               | 0.5               |
| 80                         | 421.227                                  | 549.639                      | 0.5               | 0.5               |
| 81                         | 426.302                                  | 547.659                      | 0.5               | 0.5               |
| 82                         | 431.377                                  | 545.679                      | 0.5               | 0.5               |
| 83                         | 436.452                                  | 543.72                       | 0.5               | 0.5               |
| 84                         | 441.527                                  | 541.813                      | 0.5               | 0.5               |
| 85                         | 446.602                                  | 539.795                      | 0.5               | 0.5               |
| 86                         | 451.677                                  | 536.036                      | 0.5               | 0.5               |
| 87                         | 456.752                                  | 531.878                      | 0.5               | 0.5               |
| 88                         | 461.827                                  | 527.663                      | 0.5               | 0.5               |
| 89                         | 466.902                                  | 523.432                      | 0.5               | 0.5               |
| 90                         | 471.977                                  | 519.376                      | 0.5               | 0.5               |
| 91                         | 477.052                                  | 515.819                      | 0.5               | 0.5               |
| 92                         | 482.127                                  | 512.298                      | 0.5               | 0.5               |
| 93                         | 487.202                                  | 508.713                      | 0.5               | 0.5               |
| 94                         | 492 277                                  | 505.091                      | 0.5               | 0.5               |
|                            | 497 352                                  | 501.537                      | 0.5               | 0.5               |
| 95                         | 137.332                                  | 497 972                      | 0.5               | 0.5               |
| 95<br>96                   | 502 427                                  |                              | Q.,,              | 0.5               |
| 95<br>96<br>97             | 502.427                                  | 101 302                      | 0.5               | 0.5               |
| 95<br>96<br>97<br>98       | 502.427<br>507.502<br>512.577            | 494.398                      | 0.5               | 0.5               |
| 95<br>96<br>97<br>98       | 502.427<br>507.502<br>512.577<br>517.652 | 494.398<br>490.94<br>487.606 | 0.5               | 0.5               |
| 95<br>96<br>97<br>98<br>99 | 502.427<br>507.502<br>512.577<br>517.653 | 494.398<br>490.94<br>487.606 | 0.5<br>0.5<br>0.5 | 0.5<br>0.5<br>0.5 |

Sezione 2.fal5

10/02/2023, 18:52:33

Page 2 of 4

| 1 |     | ROCFALL | 5.017   |     |     |
|---|-----|---------|---------|-----|-----|
| _ |     | siend   | e       |     |     |
|   | 102 | 532.878 | 480.182 | 0.5 | 0.5 |
|   | 103 | 537.953 | 478.037 | 0.5 | 0.5 |
|   | 104 | 543.028 | 475.998 | 0.5 | 0.5 |
|   | 105 | 548.103 | 473.157 | 0.5 | 0.5 |
|   | 106 | 553.178 | 471.205 | 0.5 | 0.5 |
|   | 107 | 558.253 | 469.419 | 0.5 | 0.5 |
|   | 108 | 563.328 | 467.806 | 0.5 | 0.5 |
|   | 109 | 568.403 | 466.246 | 0.5 | 0.5 |
|   | 110 | 573.478 | 464.709 | 0.5 | 0.5 |
|   | 111 | 578.553 | 463.088 | 0.5 | 0.5 |
|   | 112 | 583.628 | 465.307 | 0.5 | 0.5 |
|   | 113 | 588.703 | 467.802 | 0.5 | 0.5 |
|   | 114 | 593.778 | 470.379 | 0.5 | 0.5 |
|   | 115 | 598.853 | 473.704 | 0.5 | 0.5 |
|   | 116 | 603.928 | 475.073 | 0.5 | 0.5 |
|   | 117 | 609.003 | 476.577 | 0.5 | 0.5 |
|   | 118 | 614.078 | 483.582 | 0.5 | 0.5 |
|   | 119 | 619.153 | 487.91  | 0.5 | 0.5 |
|   | 120 | 624.228 | 491.676 | 0.5 | 0.5 |
|   | 121 | 629.303 | 495.412 | 0.5 | 0.5 |
|   | 122 | 634.378 | 499.393 | 0.5 | 0.5 |
|   | 123 | 639.453 | 503.348 | 0.5 | 0.5 |

### Slope Material Assignment

| Material          | From Vertex | To Vertex |
|-------------------|-------------|-----------|
| Detrito con prato | 1           | 9         |
| Roccia            | 9           | 16        |
| Detrito con bosco | 16          | 52        |
| Detrito con prato | 52          | 75        |
| Detrito con bosco | 75          | 108       |
| Depositi in alveo | 108         | 113       |
| Detrito con bosco | 113         | 123       |

### **Material Properties**

### Roccia

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.5     | None         |          |          |          |
| Tangential Restitution | 0.88    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Detrito con bosco

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.32    | None         |          |          |          |
| Tangential Restitution | 0.82    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Detrito con prato

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.3     | None         |          |          |          |
| Tangential Restitution | 0.8     | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Depositi in alveo

Sezione 2.fal5

10/02/2023, 18:52:33

| <b>Selence</b>                   |                       |                         |          |            |          |
|----------------------------------|-----------------------|-------------------------|----------|------------|----------|
| "Depositi in alveo" Pro          | perties               |                         |          |            |          |
|                                  | Mean D                | Distribution S          | itd.Dev. | Rel.Min R  | el. Max  |
| Normal Restitution               | 0.33 N                | lone                    |          |            |          |
| Tangential Restitution           | 0.85 N                | None                    |          |            |          |
| Friction Angle (*)               | calculate             | ea rrom Kt              |          |            |          |
| slope roughness ()               | r                     | NOTICE                  |          |            |          |
| Seeders                          |                       |                         |          |            |          |
| Seeder 1                         |                       |                         |          |            |          |
| Seeder Properties                |                       |                         |          |            |          |
| Name                             | Seede                 | er 1                    |          |            |          |
| Location                         | (60.90                | 003, 785.522)           |          |            |          |
| Rocks to Throw                   |                       |                         |          |            |          |
| Number of Rocks                  | 1000                  | Overall                 |          |            |          |
| Rock Types                       | Defau                 | It Rock (Spher          | e)       |            |          |
|                                  |                       |                         |          |            |          |
| Initial Conditions               |                       |                         |          |            |          |
|                                  | Mean                  | Distribution            | Std.Dev  | . Rel. Min | Rel. Max |
| Horizontal Velocity (m/          | s) 0.2                | None                    |          |            |          |
| Vertical Velocity (m/s)          | 0.2                   | None                    |          |            |          |
| Rotational Velocity (*/s         | 0                     | None                    |          |            | 260      |
| Initial Rotation (*/s)           | 0                     | Uniform                 |          | 0          | 360      |
|                                  |                       |                         |          |            |          |
| Rock Types                       |                       |                         |          |            |          |
| Default Rock (Sphere)            |                       |                         |          |            |          |
| Beneric (opriere)                |                       |                         |          |            |          |
| Properties                       | li Di i li (c         | · · · · · · · · ·       |          |            |          |
| Name Defau                       | It Rock (S            | phere)                  |          |            |          |
| Color                            |                       |                         |          |            |          |
|                                  |                       |                         |          |            |          |
| Name Defau<br>Color <b>Mea</b> r | lt Rock (S<br>Distrib | Sphere)<br>ution Std.De | v. Rel.M | lin Rel.Ma | x        |

Mean Distributio Mass (kg) 6500 None Density (kg/m<sup>3</sup>) 2600 None

Sezione 2.fal5

10/02/2023, 18:52:33













Sezione 2: Energia cinetica totale (valore medio)











### **SEZIONE 3**

### Sezione 3: Dati di ingresso

| ROCFALL S.0.7 | Page 1 of 4 |
|---------------|-------------|
|               |             |

### **RocFall Analysis Information**

### Project Summary

File Name Sezione 3.fal5 File Version 5.017

Date Created 10/02/2023, 10:19:40

#### **Project Settings**

| General Settings: |                                      |
|-------------------|--------------------------------------|
| Engine            | Lump Mass                            |
| Units             | Metric (m, kg, kJ)                   |
| Rock Throw Mode   | Number of rocks controlled by seeder |

#### Engine Conditions:

| Friction Angle            | Calculate friction angle from Rt                                                                                                                                        |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consider Angular Velocity | Yes                                                                                                                                                                     |
| Maximum time per rock     | 5s                                                                                                                                                                      |
| Maximum steps per rock    | 10000                                                                                                                                                                   |
| Normal velocity cutoff    | 0.1m/s                                                                                                                                                                  |
| Stopped velocity cutoff   | 0.1m/s                                                                                                                                                                  |
| Maximum timestep          | 0.01s                                                                                                                                                                   |
|                           | Friction Angle<br>Consider Angular Velocity<br>Maximum time per rock<br>Maximum steps per rock<br>Normal velocity cutoff<br>Stopped velocity cutoff<br>Maximum timestep |

#### Random Number Generation:

Sampling Method Monte-Carlo Random Seed Pseudo-random seed: 12345234

### Slope Geometry

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16    | 0<br>5.13814<br>10.2763<br>15.4144<br>20.5526<br>25.6907 | 801.993<br>802.629<br>803.297<br>803.515 | 0.5<br>0.5<br>0.5 | 0.5<br>0.5<br>0.5 |
|----------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-------------------|-------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br><br>10<br><br>11<br>12<br>13<br>14<br>15<br>16 | 5.13814<br>10.2763<br>15.4144<br>20.5526<br>25.6907      | 802.629<br>803.297<br>803.515            | 0.5               | 0.5<br>0.5        |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br><br>10<br><br>11<br>12<br>13<br>14<br>15<br>16      | 10.2763<br>15.4144<br>20.5526                            | 803.297<br>803.515                       | 0.5               | 0.5               |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                   | 15.4144<br>20.5526                                       | 803.515                                  | 0.5               |                   |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                        | 20.5526                                                  |                                          | 0.5               | 0.5               |
| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                             | 25 6007                                                  | 803.557                                  | 0.5               | 0.5               |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                  | 23.0907                                                  | 802.9                                    | 0.5               | 0.5               |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                       | 30.8288                                                  | 802.769                                  | 0.5               | 0.5               |
| 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                            | 35.967                                                   | 802.593                                  | 0.5               | 0.5               |
| 10<br>11<br>12<br>13<br>14<br>15<br>16                                                 | 41.1051                                                  | 802.365                                  | 0.5               | 0.5               |
| 11<br>12<br>13<br>14<br>15<br>16                                                       | 46.2433                                                  | 802.077                                  | 0.5               | 0.5               |
| 12<br>13<br>14<br>15<br>16                                                             | 51.3814                                                  | 801.142                                  | 0.5               | 0.5               |
| 13<br>14<br>15<br>16                                                                   | 56.5195                                                  | 800.755                                  | 0.5               | 0.5               |
| 14<br>15<br>16                                                                         | 61.6577                                                  | 800.269                                  | 0.5               | 0.5               |
| 15<br>16                                                                               | 66.7958                                                  | 798.512                                  | 0.5               | 0.5               |
| 16                                                                                     | 71.934                                                   | 795.516                                  | 0.5               | 0.5               |
|                                                                                        | 77.0721                                                  | 791.068                                  | 0.5               | 0.5               |
| 17                                                                                     | 82.2102                                                  | 787.993                                  | 0.5               | 0.5               |
| 18                                                                                     | 87.3484                                                  | 784.823                                  | 0.5               | 0.5               |
| 19                                                                                     | 92.4865                                                  | 781.594                                  | 0.5               | 0.5               |
| 20                                                                                     | 97.6247                                                  | 777.399                                  | 0.5               | 0.5               |
| 21                                                                                     | 102.763                                                  | 774.121                                  | 0.5               | 0.5               |
| 22                                                                                     | 107.901                                                  | 770.784                                  | 0.5               | 0.5               |
| 23                                                                                     | 113.039                                                  | 767.602                                  | 0.5               | 0.5               |
| 24                                                                                     | 118.177                                                  | 764.541                                  | 0.5               | 0.5               |
| 25                                                                                     | 123.315                                                  | 760.241                                  | 0.5               | 0.5               |
| 26                                                                                     | 128.453                                                  | 757.361                                  | 0.5               | 0.5               |
| 27                                                                                     | 133.592                                                  | 754.551                                  | 0.5               | 0.5               |
| 28                                                                                     | 138.73                                                   | 751.806                                  | 0.5               | 0.5               |
| 29                                                                                     | 143.868                                                  | 749.11                                   | 0.5               | 0.5               |
| 30                                                                                     | 149.006                                                  | 744.865                                  | 0.5               | 0.5               |
| 31                                                                                     | 154.144                                                  | 742.195                                  | 0.5               | 0.5               |
| 32                                                                                     |                                                          |                                          |                   | 0.5               |

Sezione 3.fal5

10/02/2023, 10:19:40

| 100                  | ROCFALL                     | 5.017                         |      |       |
|----------------------|-----------------------------|-------------------------------|------|-------|
| 51                   | siend                       | e                             |      |       |
| 33                   | 164.42                      | 733 456                       | 0.5  | 0.5.1 |
| 24                   | 160 550                     | 733.430                       | 0.5  | 0.5   |
| 34                   | 174 607                     | 720.2                         | 0.5  | 0.5   |
| 35                   | 170.025                     | 714.692                       | 0.5  | 0.5   |
| 30                   | 1/9.655                     | 714.065                       | 0.5  | 0.5   |
| 37                   | 184.973                     | 709.435                       | 0.5  | 0.5   |
| 38                   | 190.111                     | /04.073                       | 0.5  | 0.5   |
| 39                   | 195.249                     | 696.8                         | 0.5  | 0.5   |
| 40                   | 200.387                     | 692.687                       | 0.5  | 0.5   |
| 41                   | 205.526                     | 688.573                       | 0.5  | 0.5   |
| 42                   | 210.664                     | 684.532                       | 0.5  | 0.5   |
| 43                   | 215.802                     | 680.592                       | 0.5  | 0.5   |
| 44                   | 220.94                      | 674.186                       | 0.5  | 0.5   |
| 45                   | 226.078                     | 6/0.33/                       | 0.5  | 0.5   |
| 46                   | 231.216                     | 667.388                       | 0.5  | 0.5   |
| 4/                   | 236.354                     | 664.495                       | 0.5  | 0.5   |
| 48                   | 241.493                     | 661.563                       | 0.5  | 0.5   |
| 49                   | 246.631                     | 656.538                       | 0.5  | 0.5   |
| 50                   | 251.769                     | 653.521                       | 0.5  | 0.5   |
| 51                   | 256.907                     | 650.399                       | 0.5  | 0.5   |
| 52                   | 262.045                     | 647.319                       | 0.5  | 0.5   |
| 53                   | 267.183                     | 644.029                       | 0.5  | 0.5   |
| 54                   | 272.321                     | 638.695                       | 0.5  | 0.5   |
| 55                   | 277.46                      | 634.612                       | 0.5  | 0.5   |
| 56                   | 282.598                     | 630.532                       | 0.5  | 0.5   |
| 57                   | 287.736                     | 626.449                       | 0.5  | 0.5   |
| 58                   | 292.874                     | 620.31                        | 0.5  | 0.5   |
| 59                   | 298.012                     | 616.258                       | 0.5  | 0.5   |
| 60                   | 303.15                      | 612.238                       | 0.5  | 0.5   |
| 61                   | 308.288                     | 609.046                       | 0.5  | 0.5   |
| 62                   | 313.427                     | 606.897                       | 0.5  | 0.5   |
| 63                   | 318.565                     | 603.744                       | 0.5  | 0.5   |
| 64                   | 323.703                     | 601.568                       | 0.5  | 0.5   |
| 65                   | 328.841                     | 599.347                       | 0.5  | 0.5   |
| 66                   | 333.979                     | 597.149                       | 0.5  | 0.5   |
| 67                   | 339.117                     | 594.917                       | 0.5  | 0.5   |
| 68                   | 344.255                     | 591.786                       | 0.5  | 0.5   |
| 69                   | 349.393                     | 589.504                       | 0.5  | 0.5   |
| 70                   | 354.532                     | 587.28                        | 0.5  | 0.5   |
| 71                   | 359.67                      | 585.036                       | 0.5  | 0.5   |
| 72                   | 364.808                     | 582.76                        | 0.5  | 0.5   |
| 73                   | 369.946                     | 579.626                       | 0.5  | 0.5   |
| 74                   | 375.084                     | 577.748                       | 0.5  | 0.5   |
| 75                   | 380.222                     | 575.847                       | 0.5  | 0.5   |
| 76                   | 385.36                      | 573.972                       | 0.5  | 0.5   |
| 77                   | 390.499                     | 571.18                        | 0.5  | 0.5   |
| 78                   | 395.637                     | 569.168                       | 0.5  | 0.5   |
| 79                   | 400.775                     | 567.258                       | 0.5  | 0.5   |
| 80                   | 405.913                     | 565.651                       | 0.5  | 0.5   |
| 81                   | 411.051                     | 564.199                       | 0.5  | 0.5   |
| 82                   | 416.189                     | 561.676                       | 0.5  | 0.5   |
| 83                   | 421.327                     | 560.661                       | 0.5  | 0.5   |
| 84                   | 426,466                     | 559.562                       | 0.5  | 0.5   |
| 85                   | 431.604                     | 558.305                       | 0.5  | 0.5   |
| 86                   | 436.742                     | 557.047                       | 0.5  | 0.5   |
| 87                   | 441.88                      | 554,764                       | 0.5  | 0.5   |
| 88                   | 447.018                     | 553,543                       | 0.5  | 0.5   |
| 89                   | 452.156                     | 552.307                       | 0.5  | 0.5   |
| 90                   | 457 294                     | 551.103                       | 0.5  | 0.5   |
| 91                   | 462 433                     | 550.07                        | 0.5  | 0.5   |
| 92                   | 467.571                     | 545.301                       | 0.5  | 0.5   |
| 93                   | 472 709                     | 541,964                       | 0.5  | 0.5   |
| 94                   | 477 847                     | 538.575                       | 0.5  | 0.5   |
| 95                   | 487 985                     | 535 042                       | 0.5  | 0.5   |
| 23                   | 488 173                     | 529 909                       | 0.5  | 0.5   |
| 96                   | -00.123                     | 525.505                       | 0.5  | 0.5   |
| 96<br>97             | 493 261                     | 527 081                       | 11.5 |       |
| 96<br>97<br>98       | 493.261                     | 527.081                       | 0.5  | 0.5   |
| 96<br>97<br>98<br>99 | 493.261<br>498.4            | 527.081<br>524.211            | 0.5  | 0.5   |
| 96<br>97<br>98<br>99 | 493.261<br>498.4<br>503.538 | 527.081<br>524.211<br>521.321 | 0.5  | 0.5   |

Sezione 3.fal5

10/02/2023, 10:19:40

117

Page 2 of 4

| 1 | -   | ROCFALL | 5.017   |     |     |
|---|-----|---------|---------|-----|-----|
| - |     | siend   | e       |     |     |
|   | 102 | 518.952 | 507.582 | 0.5 | 0.5 |
|   | 103 | 524.09  | 503.342 | 0.5 | 0.5 |
|   | 104 | 529.228 | 499.181 | 0.5 | 0.5 |
|   | 105 | 534.367 | 495.097 | 0.5 | 0.5 |
|   | 106 | 539.505 | 489.306 | 0.5 | 0.5 |
|   | 107 | 544.643 | 486.174 | 0.5 | 0.5 |
|   | 108 | 549.781 | 482.985 | 0.5 | 0.5 |
|   | 109 | 554.919 | 479.791 | 0.5 | 0.5 |
|   | 110 | 560.057 | 475.191 | 0.5 | 0.5 |
|   | 111 | 565.195 | 471.89  | 0.5 | 0.5 |
|   | 112 | 570.333 | 469.488 | 0.5 | 0.5 |
|   | 113 | 575.472 | 468.277 | 0.5 | 0.5 |
|   | 114 | 580.61  | 467.046 | 0.5 | 0.5 |
|   | 115 | 585.748 | 465.374 | 0.5 | 0.5 |
|   | 116 | 590.886 | 464.254 | 0.5 | 0.5 |
|   | 117 | 596.024 | 464.189 | 0.5 | 0.5 |
|   | 118 | 601.162 | 466.318 | 0.5 | 0.5 |
|   | 119 | 606.3   | 468.617 | 0.5 | 0.5 |
|   | 120 | 611.439 | 471.292 | 0.5 | 0.5 |
|   | 121 | 616.577 | 474.081 | 0.5 | 0.5 |
|   | 122 | 621.715 | 474.564 | 0.5 | 0.5 |
|   | 123 | 626.853 | 476.73  | 0.5 | 0.5 |

### Slope Material Assignment

| Material          | From Vertex | To Vertex |
|-------------------|-------------|-----------|
| Detrito con prato | 1           | 14        |
| Detrito con bosco | 14          | 18        |
| Roccia            | 18          | 20        |
| Detrito con bosco | 20          | 33        |
| Roccia            | 33          | 36        |
| Detrito con bosco | 36          | 69        |
| Detrito con prato | 69          | 91        |
| Detrito con bosco | 91          | 113       |
| Depositi in alveo | 113         | 118       |
| Detrito con bosco | 118         | 123       |

### Material Properties

### Roccia

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.5     | None         |          |          |          |
| Tangential Restitution | 0.88    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Detrito con bosco

| ropertie | s                                          |                                                                     |                                                                                   |                                                                                            |
|----------|--------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Mean     | Distribution                               | Std.Dev.                                                            | Rel. Min                                                                          | Rel. Ma                                                                                    |
| 0.32     | None                                       |                                                                     |                                                                                   |                                                                                            |
| 0.82     | None                                       |                                                                     |                                                                                   |                                                                                            |
| Calcula  | ated from Rt                               |                                                                     |                                                                                   |                                                                                            |
|          | None                                       |                                                                     |                                                                                   |                                                                                            |
|          | opertie<br>Mean<br>0.32<br>0.82<br>Calcula | Mean Distribution   0.32 None   0.82 None   Calculated from Rt None | operties<br>Mean Distribution Std.Dev.<br>0.32 None<br>Calculated from Rt<br>None | operties<br>Mean Distribution Std.Dev. Rel. Min<br>0.32 None<br>Calculated from Rt<br>None |

### Detrito con prato

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.3     | None         |          |          |          |
| Tangential Restitution | 0.8     | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

#### Depositi in alveo

Sezione 3.fal5

10/02/2023, 10:19:40

# ROCFALL 5.017

| "Depositi in alveo" Pro       | operties | •            |          |          |          |
|-------------------------------|----------|--------------|----------|----------|----------|
|                               | Mean     | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution            | 0.33     | None         |          |          |          |
| <b>Tangential Restitution</b> | 0.5      | None         |          |          |          |
| Friction Angle (°)            | Calcula  | ated from Rt |          |          |          |
| Slope Roughness (°)           |          | None         |          |          |          |

### Seeders

| Seed | er 1                      |        |                |          |          |          |
|------|---------------------------|--------|----------------|----------|----------|----------|
|      | Seeder Properties         |        |                |          |          |          |
|      | Name                      | Seeder | 1              |          |          |          |
|      | Location                  | (87.34 | 84, 784.823)   |          |          |          |
|      | Rocks to Throw            |        |                |          |          |          |
|      | Number of Rocks           | 500 Pe | r Rock Type    |          |          |          |
|      | Rock Types                | Defaul | t Rock (Sphere | :)       |          |          |
|      | Initial Conditions        |        |                |          |          |          |
|      |                           | Mean   | Distribution   | Std.Dev. | Rel. Min | Rel. Max |
|      | Horizontal Velocity (m/s) | 0.2    | None           |          |          |          |
|      | Vertical Velocity (m/s)   | 0.2    | None           |          |          |          |
|      | Detetional Malasity (9/-) | 0      | ALC: NO        |          |          |          |

### Rotational Velocity (°/s) 0 None Initial Rotation (°/s) 0 Uniform 0 360

### Seeder 2

| Seeder Properties         |        |                |          |          |          |
|---------------------------|--------|----------------|----------|----------|----------|
| Name                      | Seeder | 2              |          |          |          |
| Location                  | (159.2 | 82, 738.966)   |          |          |          |
| Rocks to Throw            |        |                |          |          |          |
| Number of Rocks           | 500 Pe | r Rock Type    |          |          |          |
| Rock Types                | Defaul | t Rock (Sphere | e)       |          |          |
| Initial Conditions        |        |                |          |          |          |
|                           | Mean   | Distribution   | Std.Dev. | Rel. Min | Rel. Max |
| Horizontal Velocity (m/s) | 0.2    | None           |          |          |          |
| Vertical Velocity (m/s)   | 0.2    | None           |          |          |          |
| D                         | 0      | None           |          |          |          |
| Rotational velocity (*/s) | 0      |                |          |          |          |

### Rock Types

| efault Rock (Sphere)         |        |                |          |          |          |
|------------------------------|--------|----------------|----------|----------|----------|
| Properties                   |        |                |          |          |          |
| Name                         | Defaul | t Rock (Sphere | 2)       |          |          |
| Color                        |        |                |          |          |          |
|                              | Mean   | Distribution   | Std.Dev. | Rel. Min | Rel. Max |
| Mass (kg)                    | 6500   | None           |          |          |          |
| Density (kg/m <sup>3</sup> ) | 2600   | None           |          |          |          |

Sezione 3.fal5

10/02/2023, 10:19:40

Page 4 of 4









Sezione 3: Distanza di arresto



Sezione 3: Energia cinetica totale (valore medio)











### **SEZIONE 4**

### Sezione 4: Dati di ingresso

ROCALL SUIT Page 1 of 4

**RocFall Analysis Information** 

### **Project Summary**

File Name Sezione 4.fal5 File Version 5.017

Date Created 10/02/2023, 20:45:36

### Project Settings

| General Settings: |                                      |
|-------------------|--------------------------------------|
| Engine            | Lump Mass                            |
| Units             | Metric (m, kg, kJ)                   |
| Rock Throw Mode   | Number of rocks controlled by seeder |

### Engine Conditions:

| Friction Angle            | Calculate friction angle from Rt |
|---------------------------|----------------------------------|
| Consider Angular Velocity | Yes                              |
| Maximum time per rock     | 5s                               |
| Maximum steps per rock    | 10000                            |
| Normal velocity cutoff    | 0.1m/s                           |
| Stopped velocity cutoff   | 0.1m/s                           |
| Maximum timestep          | 0.01s                            |
|                           |                                  |

#### Random Number Generation:

Sampling Method Monte-Carlo Random Seed Pseudo-random seed: 12345234

### Slope Geometry

| Vertex | х       | Y       | X Std.Dev. | Y Std.Dev. |
|--------|---------|---------|------------|------------|
| 1      | 0       | 882.5   | 0.5        | 0.5        |
| 2      | 6.25853 | 881.289 | 0.5        | 0.5        |
| 3      | 12.5171 | 880.119 | 0.5        | 0.5        |
| 4      | 18.7756 | 877.614 | 0.5        | 0.5        |
| 5      | 25.0341 | 876.353 | 0.5        | 0.5        |
| 6      | 31.2926 | 873.209 | 0.5        | 0.5        |
| 7      | 37.5512 | 870.019 | 0.5        | 0.5        |
| 8      | 43.8097 | 868.706 | 0.5        | 0.5        |
| 9      | 50.0682 | 866.108 | 0.5        | 0.5        |
| 10     | 56.3268 | 863.466 | 0.5        | 0.5        |
| 11     | 62.5853 | 860.826 | 0.5        | 0.5        |
| 12     | 68.8438 | 858.696 | 0.5        | 0.5        |
| 13     | 75.1023 | 851.786 | 0.5        | 0.5        |
| 14     | 81.3609 | 844.919 | 0.5        | 0.5        |
| 15     | 87.6194 | 838.068 | 0.5        | 0.5        |
| 16     | 93.8779 | 834.344 | 0.5        | 0.5        |
| 17     | 100.136 | 828.208 | 0.5        | 0.5        |
| 18     | 106.395 | 823.387 | 0.5        | 0.5        |
| 19     | 112.654 | 818.604 | 0.5        | 0.5        |
| 20     | 118.912 | 815.831 | 0.5        | 0.5        |
| 21     | 125.171 | 811.007 | 0.5        | 0.5        |
| 22     | 131.429 | 806.388 | 0.5        | 0.5        |
| 23     | 137.688 | 801.749 | 0.5        | 0.5        |
| 24     | 143.946 | 798.704 | 0.5        | 0.5        |
| 25     | 150.205 | 793.889 | 0.5        | 0.5        |
| 26     | 156.463 | 788.945 | 0.5        | 0.5        |
| 27     | 162.722 | 783.971 | 0.5        | 0.5        |
| 28     | 168.98  | 781.151 | 0.5        | 0.5        |
| 29     | 175.239 | 776.28  | 0.5        | 0.5        |
| 30     | 181.497 | 771.259 | 0.5        | 0.5        |
| 31     | 187.756 | 765.739 | 0.5        | 0.5        |
| 32     | 194.014 | 762.641 | 0.5        | 0.5        |

Sezione 4.fal5

10/02/2023, 20:45:36

| Tois     | ROCFALL  | 5.017   |     |     |
|----------|----------|---------|-----|-----|
| 1.5      | sienc    | e       |     |     |
| 33       | 200.273  | 756.834 | 0.5 | 0.5 |
| 34       | 206.531  | 751.097 | 0.5 | 0.5 |
| 35       | 212.79   | 745.514 | 0.5 | 0.5 |
| 36       | 219.048  | 741.898 | 0.5 | 0.5 |
| 37       | 225.307  | 736.705 | 0.5 | 0.5 |
| 38       | 231.566  | 731.796 | 0.5 | 0.5 |
| 39       | 237.824  | 723.646 | 0.5 | 0.5 |
| 40       | 244.083  | 720.357 | 0.5 | 0.5 |
| 41       | 250.341  | /15.51/ | 0.5 | 0.5 |
| 42       | 250.0    | 705 845 | 0.5 | 0.5 |
| 43       | 269 117  | 702 572 | 0.5 | 0.5 |
| 45       | 275 375  | 697 266 | 0.5 | 0.5 |
| 46       | 281.634  | 691.4   | 0.5 | 0.5 |
| 47       | 287.892  | 685.474 | 0.5 | 0.5 |
| 48       | 294.151  | 681.597 | 0.5 | 0.5 |
| 49       | 300.409  | 675.665 | 0.5 | 0.5 |
| 50       | 306.668  | 669.736 | 0.5 | 0.5 |
| 51       | 312.926  | 664.366 | 0.5 | 0.5 |
| 52       | 319.185  | 660.999 | 0.5 | 0.5 |
| 53       | 325.443  | 655.64  | 0.5 | 0.5 |
| 54       | 331.702  | 650.292 | 0.5 | 0.5 |
| 55       | 337.961  | 644.842 | 0.5 | 0.5 |
| 56       | 344.219  | 641.597 | 0.5 | 0.5 |
| 58       | 356 736  | 635 171 | 0.5 | 0.5 |
| 59       | 362 995  | 632 448 | 0.5 | 0.5 |
| 60       | 369.253  | 631.088 | 0.5 | 0.5 |
| 61       | 375.512  | 628.774 | 0.5 | 0.5 |
| 62       | 381.77   | 626.455 | 0.5 | 0.5 |
| 63       | 388.029  | 624.253 | 0.5 | 0.5 |
| 64       | 394.287  | 622.479 | 0.5 | 0.5 |
| 65       | 400.546  | 619.404 | 0.5 | 0.5 |
| 66       | 406.804  | 617.192 | 0.5 | 0.5 |
| 67       | 413.063  | 615.407 | 0.5 | 0.5 |
| 68       | 419.321  | 612.482 | 0.5 | 0.5 |
| 69       | 425.58   | 609.22  | 0.5 | 0.5 |
| 70       | 431.838  | 600 204 | 0.5 | 0.5 |
| 72       | 444 356  | 594 829 | 0.5 | 0.5 |
| 73       | 450.614  | 589.512 | 0.5 | 0.5 |
| 74       | 456.873  | 584.598 | 0.5 | 0.5 |
| 75       | 463.131  | 581.17  | 0.5 | 0.5 |
| 76       | 469.39   | 576.969 | 0.5 | 0.5 |
| 77       | 475.648  | 572.83  | 0.5 | 0.5 |
| 78       | 481.907  | 568.592 | 0.5 | 0.5 |
| 79       | 488.165  | 565.667 | 0.5 | 0.5 |
| 80       | 494.424  | 561.333 | 0.5 | 0.5 |
| 81       | 500.682  | 556.995 | 0.5 | 0.5 |
| 82       | 506.941  | 552.646 | 0.5 | 0.5 |
| 84       | 510 / 59 | 543.500 | 0.5 | 0.5 |
| 85       | 525.716  | 537.255 | 0.5 | 0.5 |
| 86       | 531.975  | 530.832 | 0.5 | 0.5 |
| 87       | 538.233  | 527.137 | 0.5 | 0.5 |
| 88       | 544.492  | 520.64  | 0.5 | 0.5 |
| 89       | 550.751  | 514.746 | 0.5 | 0.5 |
| 90       | 557.009  | 508.856 | 0.5 | 0.5 |
| 91       | 563.268  | 505.866 | 0.5 | 0.5 |
| 92       | 569.526  | 500.073 | 0.5 | 0.5 |
| 93       | 575.785  | 494.061 | 0.5 | 0.5 |
| 94       | 582.043  | 487.438 | 0.5 | 0.5 |
| 95       | 588.302  | 483.661 | 0.5 | 0.5 |
| 90       | 594.50   | 4/0.223 | 0.5 | 0.5 |
| 98       | 607 077  | 469 017 | 0.5 | 0.5 |
| 99       | 613.336  | 468.592 | 0.5 | 0.5 |
| 100      | 619.594  | 467.808 | 0.5 | 0.5 |
| 101      | 625.853  | 467.515 | 0.5 | 0.5 |
| <u>k</u> |          |         |     | 1   |

Sezione 4.fal5

10/02/2023, 20:45:36

Page 2 of 4

## ROCFALL 5.017

.

| 102 | 632.111 | 467.852 | 0.5 | 0.5 |
|-----|---------|---------|-----|-----|
| 103 | 638.37  | 468.943 | 0.5 | 0.5 |
| 104 | 644.628 | 471.705 | 0.5 | 0.5 |
| 105 | 650.887 | 474.723 | 0.5 | 0.5 |
| 106 | 657.145 | 475.567 | 0.5 | 0.5 |
| 107 | 663.404 | 476.924 | 0.5 | 0.5 |
| 108 | 669.663 | 479.956 | 0.5 | 0.5 |
| 109 | 675.921 | 484.126 | 0.5 | 0.5 |

### Slope Material Assignment

| Material          | From Vertex | To Vertex |
|-------------------|-------------|-----------|
| Detrito con prato | 1           | 10        |
| Roccia            | 10          | 20        |
| Detrito on bosco  | 20          | 65        |
| Detrito con prato | 65          | 73        |
| Detrito on bosco  | 73          | 97        |
| Depositi in alveo | 97          | 104       |
| Detrito on bosco  | 104         | 109       |

### **Material Properties**

### Roccia

| "Roccia" Properties           |         |              |          |          |          |
|-------------------------------|---------|--------------|----------|----------|----------|
|                               | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution            | 0.5     | None         |          |          |          |
| <b>Tangential Restitution</b> | 0.88    | None         |          |          |          |
| Friction Angle (°)            | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)           |         | None         |          |          |          |

#### Detrito on bosco

| "Detrito on bosco" Pro        | operties |              |          |          |          |
|-------------------------------|----------|--------------|----------|----------|----------|
|                               | Mean     | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution            | 0.32     | None         |          |          |          |
| <b>Tangential Restitution</b> | 0.82     | None         |          |          |          |
| Friction Angle (°)            | Calcula  | ated from Rt |          |          |          |
| Slope Roughness (°)           |          | None         |          |          |          |
|                               |          |              |          |          |          |

### Detrito con prato

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.3     | None         |          |          |          |
| Tangential Restitution | 0.8     | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Depositi in alveo

| "Depositi in alveo" Pro       | operties |              |          |          |          |
|-------------------------------|----------|--------------|----------|----------|----------|
|                               | Mean     | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution            | 0.33     | None         |          |          |          |
| <b>Tangential Restitution</b> | 0.85     | None         |          |          |          |
| Friction Angle (°)            | Calcula  | ated from Rt |          |          |          |
| Slope Roughness (°)           |          | None         |          |          |          |

### Seeders

Seeder 1

Sezione 4.fal5

10/02/2023, 20:45:36

| 016 | ROCFALL 5.0        | 117         |          |                 |            |           |          |
|-----|--------------------|-------------|----------|-----------------|------------|-----------|----------|
|     | Seience            | 9           |          |                 |            |           |          |
|     | Seeder Propert     | ties        |          |                 |            |           |          |
|     | Name               |             | Seeder   | r 1             |            |           |          |
|     | Location           |             | (56.32   | 68, 863.466)    |            |           |          |
|     | Rocks to Throv     | N           |          |                 |            |           |          |
|     | Number of Roc      | :ks         | 1000 0   | Overall         |            |           |          |
|     | Rock Types         |             | Defaul   | lt Rock (Sphere | e)         |           |          |
|     |                    |             |          |                 |            |           |          |
|     | Initial Conditio   | ons         |          | Dist. it. star  | Chil David | Del Min   | D.1.04   |
|     | Herizentel Vela    | :+- · ( /-) | wean     | Distribution    | Sta.Dev.   | Ref. Milh | Rel. Max |
|     | Horizontal Velocit | DCITY (m/s) | 0.2      | None            |            |           |          |
|     | Vertical velocit   | ty (m/s)    | 0.2      | None            |            |           |          |
|     | Rotational ver     | (° ( «)     | 0        | None            |            | 0         | 260      |
|     | Initial Rotation   | (75)        | 0        | Uniform         |            | U         | 360      |
| -   |                    |             |          |                 |            |           |          |
| 100 | k Types            |             |          |                 |            |           |          |
| efa | ult Rock (Sphere   | e)          |          |                 |            |           |          |
|     | Properties         |             |          |                 |            |           |          |
|     | Name               | Default     | Rock (S  | phere)          |            |           |          |
|     | Color              |             |          |                 |            |           |          |
|     |                    |             |          |                 |            |           |          |
|     |                    | Mean I      | Distribu | tion Std.Dev    | . Rel. Mir | Rel. Ma   | x        |

Mean Distrib Mass (kg) 6500 None Density (kg/m<sup>3</sup>) 2600 None

Sezione 4.fal5

10/02/2023, 20:45:36









Sezione 4: Distanza di arresto



Sezione 4: Energia cinetica totale (valore medio)











### **SEZIONE 5**

### Sezione 5: Dati di ingresso

ROCALL SAIT Page 1 of 4

**RocFall Analysis Information** 

### **Project Summary**

File Name Sezione 5.fal5 File Version 5.017

Date Created 10/02/2023, 21:13:58

### Project Settings

| General Settings: |                                      |
|-------------------|--------------------------------------|
| Engine            | Lump Mass                            |
| Units             | Metric (m, kg, kJ)                   |
| Rock Throw Mode   | Number of rocks controlled by seeder |

### Engine Conditions:

| Friction Angle            | Calculate friction angle from Rt |
|---------------------------|----------------------------------|
| Consider Angular Velocity | No                               |
| Maximum time per rock     | 5s                               |
| Maximum steps per rock    | 10000                            |
| Normal velocity cutoff    | 0.1m/s                           |
| Stopped velocity cutoff   | 0.1m/s                           |
| Maximum timestep          | 0.01s                            |
|                           |                                  |

#### Random Number Generation:

Sampling Method Monte-Carlo Random Seed Pseudo-random seed: 12345234

### Slope Geometry

| Vertex     | х       | Y       | X Std.Dev. | Y Std.Dev. |
|------------|---------|---------|------------|------------|
| 1          | 0       | 892.194 | 0.5        | 0.5        |
| 2          | 5.33576 | 891.409 | 0.5        | 0.5        |
| 3          | 10.6715 | 891.452 | 0.5        | 0.5        |
| 4          | 16.0073 | 891.256 | 0.5        | 0.5        |
| 5          | 21.343  | 889.747 | 0.5        | 0.5        |
| 6          | 26.6788 | 888.323 | 0.5        | 0.5        |
| 7          | 32.0145 | 886.447 | 0.5        | 0.5        |
| 8          | 37.3503 | 882.912 | 0.5        | 0.5        |
| 9          | 42.6861 | 880.824 | 0.5        | 0.5        |
| 10         | 48.0218 | 875.927 | 0.5        | 0.5        |
| 11         | 53.3576 | 872.591 | 0.5        | 0.5        |
| 12         | 58.6933 | 870.088 | 0.5        | 0.5        |
| 13         | 64.0291 | 866.445 | 0.5        | 0.5        |
| 14         | 69.3648 | 863.5   | 0.5        | 0.5        |
| 15         | 74.7006 | 860.563 | 0.5        | 0.5        |
| 16 80.0364 | 855.95  | 0.5     | 0.5        |            |
| 17         | 85.3721 | 851.162 | 0.5        | 0.5        |
| 18         | 90.7079 | 846.561 | 0.5        | 0.5        |
| 19 96.0436 |         | 841.356 | 0.5        | 0.5        |
| 20 101.379 |         | 837.007 | 0.5        | 0.5        |
| 21         | 106.715 | 832.764 | 0.5        | 0.5        |
| 22         | 112.051 | 828.069 | 0.5        | 0.5        |
| 23         | 117.387 | 824.229 | 0.5        | 0.5        |
| 24         | 122.722 | 819.807 | 0.5        | 0.5        |
| 25         | 128.058 | 815.963 | 0.5        | 0.5        |
| 26         | 133.394 | 812.138 | 0.5        | 0.5        |
| 27         | 138.73  | 807.744 | 0.5        | 0.5        |
| 28         | 144.065 | 804.053 | 0.5        | 0.5        |
| 29         | 149.401 | 800.388 | 0.5        | 0.5        |
| 30         | 154.737 | 796.428 | 0.5        | 0.5        |
| 31         | 160.073 | 793.292 | 0.5        | 0.5        |
| 32         | 165.408 | 790.12  | 0.5        | 0.5        |

Sezione 5.fal5

10/02/2023, 21:13:58

| Taxo                                    | ROCFALL                                                       | 5.017                                                          |                                 |                                 |
|-----------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|---------------------------------|
| 51                                      | siend                                                         | e                                                              |                                 |                                 |
| 22                                      | 170 744                                                       | 796 201                                                        | 0.5                             | 0.5.1                           |
| 33                                      | 176.09                                                        | 782.001                                                        | 0.5                             | 0.5                             |
| 34                                      | 191 /16                                                       | 770 999                                                        | 0.5                             | 0.5                             |
| 36                                      | 186 752                                                       | 776 524                                                        | 0.5                             | 0.5                             |
| 37                                      | 192 087                                                       | 773 674                                                        | 0.5                             | 0.5                             |
| 38                                      | 197 423                                                       | 770 228                                                        | 0.5                             | 0.5                             |
| 30                                      | 202 750                                                       | 766.41                                                         | 0.5                             | 0.5                             |
| 40                                      | 202.755                                                       | 762 507                                                        | 0.5                             | 0.5                             |
| 40                                      | 208.033                                                       | 757 75                                                         | 0.5                             | 0.5                             |
| 41                                      | 213.45                                                        | 752 904                                                        | 0.5                             | 0.5                             |
| 12                                      | 224 102                                                       | 740.042                                                        | 0.5                             | 0.5                             |
| 43                                      | 224.102                                                       | 745.545                                                        | 0.5                             | 0.5                             |
| 44                                      | 223.438                                                       | 743.431                                                        | 0.5                             | 0.5                             |
| 45                                      | 240 109                                                       | 737 614                                                        | 0.5                             | 0.5                             |
| 40                                      | 240.105                                                       | 722 025                                                        | 0.5                             | 0.5                             |
| 47                                      | 243.443                                                       | 732.333                                                        | 0.5                             | 0.5                             |
| 40                                      | 250.781                                                       | 720.304                                                        | 0.5                             | 0.5                             |
| 49                                      | 250.110                                                       | 724.570                                                        | 0.5                             | 0.5                             |
| 50                                      | 201.432                                                       | 720.244                                                        | 0.5                             | 0.5                             |
| 51                                      | 200.700                                                       | 711.100                                                        | 0.3                             | 0.5                             |
| 52                                      | 272.124                                                       | 707 201                                                        | 0.5                             | 0.5                             |
| 55                                      | 2/7.433                                                       | 707.301                                                        | 0.5                             | 0.5                             |
| 54                                      | 282.795                                                       | /03.38/                                                        | 0.5                             | 0.5                             |
| 55                                      | 288.131                                                       | 698.328                                                        | 0.5                             | 0.5                             |
| 56                                      | 293.467                                                       | 694.592                                                        | 0.5                             | 0.5                             |
| 57                                      | 298.802                                                       | 690.787                                                        | 0.5                             | 0.5                             |
| 58                                      | 304.138                                                       | 686.104                                                        | 0.5                             | 0.5                             |
| 59                                      | 309.474                                                       | 682.322                                                        | 0.5                             | 0.5                             |
| 60                                      | 314.81                                                        | 678.565                                                        | 0.5                             | 0.5                             |
| 61                                      | 320.145                                                       | 6/4.15/                                                        | 0.5                             | 0.5                             |
| 62                                      | 325.481                                                       | 670.451                                                        | 0.5                             | 0.5                             |
| 63                                      | 330.817                                                       | 666.115                                                        | 0.5                             | 0.5                             |
| 64                                      | 336.153                                                       | 662.525                                                        | 0.5                             | 0.5                             |
| 65                                      | 341.488                                                       | 659                                                            | 0.5                             | 0.5                             |
| 66                                      | 346.824                                                       | 654.455                                                        | 0.5                             | 0.5                             |
| 67                                      | 352.16                                                        | 650.954                                                        | 0.5                             | 0.5                             |
| 68                                      | 357.496                                                       | 647.414                                                        | 0.5                             | 0.5                             |
| 69                                      | 362.832                                                       | 642.784                                                        | 0.5                             | 0.5                             |
| 70                                      | 368.167                                                       | 639.288                                                        | 0.5                             | 0.5                             |
| /1                                      | 373.503                                                       | 635.339                                                        | 0.5                             | 0.5                             |
| 12                                      | 378.839                                                       | 630.565                                                        | 0.5                             | 0.5                             |
| /3                                      | 384.175                                                       | 626.597                                                        | 0.5                             | 0.5                             |
| /4                                      | 389.51                                                        | 622.621                                                        | 0.5                             | 0.5                             |
| 75                                      | 394.846                                                       | 618.334                                                        | 0.5                             | 0.5                             |
| 76                                      | 400.182                                                       | 614.383                                                        | 0.5                             | 0.5                             |
| 77                                      | 405.518                                                       | 610.411                                                        | 0.5                             | 0.5                             |
| 78                                      | 410.853                                                       | 606.846                                                        | 0.5                             | 0.5                             |
| 79                                      | 416.189                                                       | 603.319                                                        | 0.5                             | 0.5                             |
| 80                                      | 421.525                                                       | 599.645                                                        | 0.5                             | 0.5                             |
| 81                                      | 426.861                                                       | 596.072                                                        | 0.5                             | 0.5                             |
| 82                                      | 432.196                                                       | 592.506                                                        | 0.5                             | 0.5                             |
| 83                                      | 437.532                                                       | 588.387                                                        | 0.5                             | 0.5                             |
| 84                                      | 442.868                                                       | 584.775                                                        | 0.5                             | 0.5                             |
| 85                                      | 448.204                                                       | 581.213                                                        | 0.5                             | 0.5                             |
| 86                                      | 453.539                                                       | 575.022                                                        | 0.5                             | 0.5                             |
| 87                                      | 458.875                                                       | 569.367                                                        | 0.5                             | 0.5                             |
| 88                                      | 464.211                                                       | 562.757                                                        | 0.5                             | 0.5                             |
| 89                                      | 469.547                                                       | 557.125                                                        | 0.5                             | 0.5                             |
| 90                                      | 474.882                                                       | 551.44                                                         | 0.5                             | 0.5                             |
| 91                                      | 480.218                                                       | 547.377                                                        | 0.5                             | 0.5                             |
| 92                                      | 485.554                                                       | 544.493                                                        | 0.5                             | 0.5                             |
| 93                                      | 490.89                                                        | 541.573                                                        | 0.5                             | 0.5                             |
|                                         | 496.225                                                       | 539.188                                                        | 0.5                             | 0.5                             |
| 94                                      |                                                               |                                                                | 0.5                             | 0.5                             |
| 94<br>95                                | 501.561                                                       | 536.266                                                        | 0.5                             | 0.5                             |
| 94<br>95<br>96                          | 501.561<br>506.897                                            | 536.266<br>533.299                                             | 0.5                             | 0.5                             |
| 94<br>95<br>96<br>97                    | 501.561<br>506.897<br>512.233                                 | 536.266<br>533.299<br>530.984                                  | 0.5                             | 0.5                             |
| 94<br>95<br>96<br>97<br>98              | 501.561<br>506.897<br>512.233<br>517.568                      | 536.266<br>533.299<br>530.984<br>528.076                       | 0.5<br>0.5<br>0.5               | 0.5<br>0.5<br>0.5               |
| 94<br>95<br>96<br>97<br>98<br>99        | 501.561<br>506.897<br>512.233<br>517.568<br>522.904           | 536.266<br>533.299<br>530.984<br>528.076<br>524.949            | 0.5<br>0.5<br>0.5<br>0.5        | 0.5<br>0.5<br>0.5<br>0.5        |
| 94<br>95<br>96<br>97<br>98<br>99<br>100 | 501.561<br>506.897<br>512.233<br>517.568<br>522.904<br>528.24 | 536.266<br>533.299<br>530.984<br>528.076<br>524.949<br>521.884 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 |

Sezione 5.fal5

10/02/2023, 21:13:58

Page 2 of 4

| 1 |     | ROCFALL | 5.017   |     |     |  |
|---|-----|---------|---------|-----|-----|--|
| - |     | siend   | e       |     |     |  |
|   | 102 | 538.912 | 515.024 | 0.5 | 0.5 |  |
|   | 103 | 544.247 | 512.029 | 0.5 | 0.5 |  |
|   | 104 | 549.583 | 509.402 | 0.5 | 0.5 |  |
|   | 105 | 554.919 | 504.825 | 0.5 | 0.5 |  |
|   | 106 | 560.255 | 502.136 | 0.5 | 0.5 |  |
|   | 107 | 565.59  | 499.725 | 0.5 | 0.5 |  |
|   | 108 | 570.926 | 494.972 | 0.5 | 0.5 |  |
|   | 109 | 576.262 | 492.36  | 0.5 | 0.5 |  |
|   | 110 | 581.598 | 489.891 | 0.5 | 0.5 |  |
|   | 111 | 586.933 | 488.203 | 0.5 | 0.5 |  |
|   | 112 | 592.269 | 487.174 | 0.5 | 0.5 |  |
|   | 113 | 597.605 | 485.564 | 0.5 | 0.5 |  |
|   | 114 | 602.941 | 484.548 | 0.5 | 0.5 |  |
|   | 115 | 608.276 | 483.512 | 0.5 | 0.5 |  |
|   | 116 | 613.612 | 482.012 | 0.5 | 0.5 |  |
|   | 117 | 618.948 | 481.035 | 0.5 | 0.5 |  |
|   | 118 | 624.284 | 480.148 | 0.5 | 0.5 |  |
|   | 119 | 629.619 | 478.548 | 0.5 | 0.5 |  |
|   | 120 | 634.955 | 477.343 | 0.5 | 0.5 |  |
|   | 121 | 640.291 | 476.13  | 0.5 | 0.5 |  |
|   | 122 | 645.627 | 474.618 | 0.5 | 0.5 |  |
|   | 123 | 650.962 | 473.424 | 0.5 | 0.5 |  |
|   | 124 | 656.298 | 472.188 | 0.5 | 0.5 |  |
|   | 125 | 661.634 | 472.204 | 0.5 | 0.5 |  |
|   | 126 | 666.97  | 472.578 | 0.5 | 0.5 |  |
|   | 127 | 672.305 | 472.716 | 0.5 | 0.5 |  |
|   | 128 | 677.641 | 474.164 | 0.5 | 0.5 |  |
|   | 129 | 682.977 | 476.342 | 0.5 | 0.5 |  |
|   | 130 | 688 313 | 478 049 | 0.5 | 0.5 |  |

### Slope Material Assignment

| Material          | From Vertex | To Vertex |
|-------------------|-------------|-----------|
| Detrito con bosco | 1           | 7         |
| Roccia            | 7           | 12        |
| Detrito con bosco | 12          | 20        |
| Roccia            | 20          | 25        |
| Detrito con bosco | 25          | 38        |
| Roccia            | 38          | 40        |
| Detrito con bosco | 40          | 43        |
| Roccia            | 43          | 45        |
| Detrito con bosco | 45          | 122       |
| Depositi i alveo  | 122         | 128       |
| Detrito con bosco | 128         | 130       |

### Material Properties

### Depositi i alveo

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.33    | Normal       | 0.04     | 0.12     | 0.12     |
| Tangential Restitution | 0.85    | Normal       | 0.04     | 0.12     | 0.12     |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

#### Roccia

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.5     | None         |          |          |          |
| Tangential Restitution | 0.88    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Detrito con bosco

Sezione 5.fal5

10/02/2023, 21:13:58

Page 3 of 4

| TOIS    | sience                 |             |          |               |            |          |      |          |
|---------|------------------------|-------------|----------|---------------|------------|----------|------|----------|
| "       | Detrito con bosco" F   | Propert     | ies      |               |            |          |      |          |
| N       | ormal Restitution      | Mea<br>0.32 | n D<br>ℕ | istribution   | Std.Dev.   | Rel. Mi  | n Re | el. Max  |
| Ta      | angential Restitution  | 1 0.82      | N        | one           |            |          |      |          |
| Fr      | riction Angle (°)      | Calcu       | late     | d from Rt     |            |          |      |          |
| SI      | lope Roughness (°)     |             | Ν        | one           |            |          |      |          |
| Seede   | ers                    |             |          |               |            |          |      |          |
| Seeder  | 1                      |             |          |               |            |          |      |          |
| Se      | eeder Properties       |             |          |               |            |          |      |          |
| N       | ame                    | Se          | ede      | r 1           |            |          |      |          |
| Lo      | ocation                | (3          | 2.01     | 45, 886.447)  | E          |          |      |          |
| R       | ocks to Throw          |             |          |               |            |          |      |          |
| N       | umber of Rocks         | 10          | 000 0    | Overall       |            |          |      |          |
| R       | ock Types              | D           | efaul    | lt Rock (Sphe | ere)       |          |      |          |
| In      | nitial Conditions      |             |          |               |            |          |      |          |
|         |                        | M           | lean     | Distributio   | n Std.De   | v. Rel.  | Min  | Rel. Max |
| н       | orizontal Velocity (m  | n/s) 0.     | 2        | None          |            |          |      |          |
| V       | ertical Velocity (m/s  | ) 0.        | 2        | None          |            |          |      |          |
| R       | otational Velocity (°, | /s) 0       |          | None          |            |          |      |          |
| In      | nitial Rotation (°/s)  | 0           |          | Uniform       |            | 0        |      | 360      |
|         |                        |             |          |               |            |          |      |          |
| Rock    | Types                  |             |          |               |            |          |      |          |
| Default | Rock (Sphere)          |             |          |               |            |          |      |          |
| P       | roperties              |             |          |               |            |          |      |          |
| N       | ame Defa               | ault Ro     | ck (Si   | phere)        |            |          |      |          |
| C       | olor                   | ]           |          |               |            |          |      |          |
|         |                        |             |          |               |            |          |      |          |
|         | Mea                    | an Dis      | tribu    | tion Std.De   | ev. Rel. I | ∕lin Rel | . Ma | x        |

Mean Distribution Mass (kg) 6500 None Density (kg/m<sup>3</sup>) 2600 None

Sezione 5.fal5

10/02/2023, 21:13:58









Sezione 5: Distanza di arresto



Sezione 5: Energia cinetica totale (valore medio)







Sezione 5: Traiettorie



### **SEZIONE 6**

### Sezione 6: Dati di ingresso

ROCALL SUIT Page 1 of 4

**RocFall Analysis Information** 

### **Project Summary**

File Name Sezione 6.fal5 File Version 5.017

Date Created 10/02/2023, 21:41:44

### Project Settings

| General Settings: |                                      |
|-------------------|--------------------------------------|
| Engine            | Lump Mass                            |
| Units             | Metric (m, kg, kJ)                   |
| Rock Throw Mode   | Number of rocks controlled by seeder |

### Engine Conditions:

| Friction Angle            | Calculate friction angle from Rt |
|---------------------------|----------------------------------|
| Consider Angular Velocity | Yes                              |
| Maximum time per rock     | 5s                               |
| Maximum steps per rock    | 10000                            |
| Normal velocity cutoff    | 0.1m/s                           |
| Stopped velocity cutoff   | 0.1m/s                           |
| Maximum timestep          | 0.01s                            |
|                           |                                  |

#### Random Number Generation:

Sampling Method Monte-Carlo Random Seed Pseudo-random seed: 12345234

### Slope Geometry

| Vertex | х       | Y       | X Std.Dev. | Y Std.Dev. |
|--------|---------|---------|------------|------------|
| 1      | 0       | 980     | 0.5        | 0.5        |
| 2      | 5.37603 | 980     | 0.5        | 0.5        |
| 3      | 10.7521 | 980     | 0.5        | 0.5        |
| 4      | 16.1281 | 980     | 0.5        | 0.5        |
| 5      | 21.5041 | 980     | 0.5        | 0.5        |
| 6      | 26.8801 | 980     | 0.5        | 0.5        |
| 7      | 32.2562 | 980     | 0.5        | 0.5        |
| 8      | 37.6322 | 980     | 0.5        | 0.5        |
| 9      | 43.0082 | 973.822 | 0.5        | 0.5        |
| 10     | 48.3843 | 960.461 | 0.5        | 0.5        |
| 11     | 53.7603 | 948.512 | 0.5        | 0.5        |
| 12     | 59.1363 | 939.821 | 0.5        | 0.5        |
| 13     | 64.5124 | 932.755 | 0.5        | 0.5        |
| 14     | 69.8884 | 925.812 | 0.5        | 0.5        |
| 15     | 75.2644 | 918.18  | 0.5        | 0.5        |
| 16     | 80.6404 | 913.538 | 0.5        | 0.5        |
| 17     | 86.0165 | 908.08  | 0.5        | 0.5        |
| 18     | 91.3925 | 903.279 | 0.5        | 0.5        |
| 19     | 96.7685 | 898.65  | 0.5        | 0.5        |
| 20     | 102.145 | 892.648 | 0.5        | 0.5        |
| 21     | 107.521 | 888.537 | 0.5        | 0.5        |
| 22     | 112.897 | 883.992 | 0.5        | 0.5        |
| 23     | 118.273 | 880.626 | 0.5        | 0.5        |
| 24     | 123.649 | 877.241 | 0.5        | 0.5        |
| 25     | 129.025 | 872.793 | 0.5        | 0.5        |
| 26     | 134.401 | 869.402 | 0.5        | 0.5        |
| 27     | 139.777 | 864.996 | 0.5        | 0.5        |
| 28     | 145.153 | 861.604 | 0.5        | 0.5        |
| 29     | 150.529 | 856.855 | 0.5        | 0.5        |
| 30     | 155.905 | 849.396 | 0.5        | 0.5        |
| 31     | 161.281 | 843.485 | 0.5        | 0.5        |
| 32     | 166.657 | 835.563 | 0.5        | 0.5        |

Sezione 6.fal5

10/02/2023, 21:41:44

| 2010                              | ROCFALL                                                        | 5.017                                               |                          |                                 |
|-----------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--------------------------|---------------------------------|
| 51                                | siend                                                          | e                                                   |                          |                                 |
| 33                                | 172 033                                                        | 820 053                                             | 0.5                      | 0.5.1                           |
| 33                                | 177.000                                                        | 826 373                                             | 0.5                      | 0.5                             |
| 34                                | 100 705                                                        | 020.373                                             | 0.5                      | 0.5                             |
| 35                                | 102.703                                                        | 917 006                                             | 0.5                      | 0.5                             |
| 30                                | 102 527                                                        | 912 047                                             | 0.5                      | 0.5                             |
| 37                                | 109 012                                                        | 012.947<br>900 E16                                  | 0.3                      | 0.5                             |
| 20                                | 196.915                                                        | 806 102                                             | 0.5                      | 0.5                             |
| 39                                | 204.289                                                        | 800.102                                             | 0.5                      | 0.5                             |
| 40                                | 209.005                                                        | 707.002                                             | 0.5                      | 0.5                             |
| 41                                | 215.041                                                        | 797.992                                             | 0.5                      | 0.5                             |
| 42                                | 220.417                                                        | 795.056                                             | 0.5                      | 0.5                             |
| 43                                | 225.793                                                        | 790.785                                             | 0.5                      | 0.5                             |
| 44                                | 231.169                                                        | 788.058                                             | 0.5                      | 0.5                             |
| 45                                | 236.545                                                        | /83.6//                                             | 0.5                      | 0.5                             |
| 46                                | 241.921                                                        | 780.952                                             | 0.5                      | 0.5                             |
| 47                                | 247.297                                                        | //6.688                                             | 0.5                      | 0.5                             |
| 48                                | 252.673                                                        | //4.141                                             | 0.5                      | 0.5                             |
| 49                                | 258.049                                                        | 771.699                                             | 0.5                      | 0.5                             |
| 50                                | 263.425                                                        | 767.53                                              | 0.5                      | 0.5                             |
| 51                                | 268.801                                                        | 765.38                                              | 0.5                      | 0.5                             |
| 52                                | 274.177                                                        | 763.298                                             | 0.5                      | 0.5                             |
| 53                                | 279.554                                                        | 759.387                                             | 0.5                      | 0.5                             |
| 54                                | 284.93                                                         | 757.54                                              | 0.5                      | 0.5                             |
| 55                                | 290.306                                                        | 753.638                                             | 0.5                      | 0.5                             |
| 56                                | 295.682                                                        | 751.855                                             | 0.5                      | 0.5                             |
| 57                                | 301.058                                                        | 750.104                                             | 0.5                      | 0.5                             |
| 58                                | 306.434                                                        | 746.322                                             | 0.5                      | 0.5                             |
| 59                                | 311.81                                                         | 744.623                                             | 0.5                      | 0.5                             |
| 60                                | 317.186                                                        | 740.849                                             | 0.5                      | 0.5                             |
| 61                                | 322.562                                                        | 738.905                                             | 0.5                      | 0.5                             |
| 62                                | 327.938                                                        | 736.388                                             | 0.5                      | 0.5                             |
| 63                                | 333.314                                                        | 730.576                                             | 0.5                      | 0.5                             |
| 64                                | 338.69                                                         | 726.404                                             | 0.5                      | 0.5                             |
| 65                                | 344.066                                                        | 720.46                                              | 0.5                      | 0.5                             |
| 66                                | 349.442                                                        | 716.232                                             | 0.5                      | 0.5                             |
| 67                                | 354.818                                                        | 711.756                                             | 0.5                      | 0.5                             |
| 68                                | 360.194                                                        | 706.052                                             | 0.5                      | 0.5                             |
| 69                                | 365.57                                                         | 701.528                                             | 0.5                      | 0.5                             |
| 70                                | 370.946                                                        | 695.796                                             | 0.5                      | 0.5                             |
| 71                                | 376.322                                                        | 691.225                                             | 0.5                      | 0.5                             |
| 72                                | 381.698                                                        | 686.592                                             | 0.5                      | 0.5                             |
| 73                                | 387.074                                                        | 680.878                                             | 0.5                      | 0.5                             |
| 74                                | 392.45                                                         | 676.349                                             | 0.5                      | 0.5                             |
| 75                                | 397.826                                                        | 671.107                                             | 0.5                      | 0.5                             |
| 76                                | 403.202                                                        | 666.164                                             | 0.5                      | 0.5                             |
| 77                                | 408.578                                                        | 661.134                                             | 0.5                      | 0.5                             |
| 78                                | 413.954                                                        | 655.447                                             | 0.5                      | 0.5                             |
| 79                                | 419.33                                                         | 650.282                                             | 0.5                      | 0.5                             |
| 80                                | 424.706                                                        | 644.313                                             | 0.5                      | 0.5                             |
| 81                                | 430.082                                                        | 639.429                                             | 0.5                      | 0.5                             |
| 82                                | 435.458                                                        | 636.494                                             | 0.5                      | 0.5                             |
| 83                                | 440 834                                                        | 632.77                                              | 0.5                      | 0.5                             |
| 84                                | 446.21                                                         | 629 728                                             | 0.5                      | 0.5                             |
| 85                                | 451 586                                                        | 626.1                                               | 0.5                      | 0.5                             |
| 86                                | 456 962                                                        | 623.099                                             | 0.5                      | 0.5                             |
| 87                                | 462 339                                                        | 620.052                                             | 0.5                      | 0.5                             |
| 88                                | 467 715                                                        | 616 385                                             | 0.5                      | 0.5                             |
| 80                                | 407.713                                                        | 613 436                                             | 0.5                      | 0.5                             |
| 00                                | 475.051                                                        | 610 425                                             | 0.5                      | 0.5                             |
| 90                                | 4/0.40/                                                        | 607 251                                             | 0.5                      | 0.5                             |
| 92                                | 403.045                                                        | 604 971                                             | 0.5                      | 0.5                             |
| 92                                | 403.219                                                        | 602 255                                             | 0.5                      | 0.5                             |
| 55                                | 494.595                                                        | 500 007                                             | 0.5                      | 0.5                             |
| 34                                | 499.9/1                                                        | 599.89/                                             | 0.5                      | 0.5                             |
| OF                                | EOE 347                                                        | 34X 3/X                                             | 0.5                      | 0.5                             |
| 95                                | 505.347                                                        | 500.000                                             | 0.5                      | 0 5                             |
| 95<br>96                          | 505.347<br>510.723                                             | 596.903                                             | 0.5                      | 0.5                             |
| 95<br>96<br>97                    | 505.347<br>510.723<br>516.099                                  | 596.903<br>594.415                                  | 0.5                      | 0.5<br>0.5                      |
| 95<br>96<br>97<br>98              | 505.347<br>510.723<br>516.099<br>521.475                       | 596.903<br>594.415<br>592.171                       | 0.5<br>0.5<br>0.5        | 0.5<br>0.5<br>0.5               |
| 95<br>96<br>97<br>98<br>99        | 505.347<br>510.723<br>516.099<br>521.475<br>526.851            | 596.903<br>594.415<br>592.171<br>589.808            | 0.5<br>0.5<br>0.5        | 0.5<br>0.5<br>0.5<br>0.5        |
| 95<br>96<br>97<br>98<br>99<br>100 | 505.347<br>510.723<br>516.099<br>521.475<br>526.851<br>532.227 | 596.903<br>594.415<br>592.171<br>589.808<br>587.787 | 0.5<br>0.5<br>0.5<br>0.5 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5 |

Sezione 6.fal5

10/02/2023, 21:41:44

Page 2 of 4

|     | ROCFALL | 5.017   |     |     |
|-----|---------|---------|-----|-----|
|     | siend   | e       |     |     |
| 102 | 542.979 | 583.966 | 0.5 | 0.5 |
| 103 | 548.355 | 582.119 | 0.5 | 0.5 |
| 104 | 553.731 | 580.158 | 0.5 | 0.5 |
| 105 | 559.107 | 577.049 | 0.5 | 0.5 |
| 106 | 564.483 | 573.672 | 0.5 | 0.5 |
| 107 | 569.859 | 570.518 | 0.5 | 0.5 |
| 108 | 575.235 | 567.261 | 0.5 | 0.5 |
| 109 | 580.611 | 564.291 | 0.5 | 0.5 |
| 110 | 585.987 | 561.3   | 0.5 | 0.5 |
| 111 | 591.363 | 558.648 | 0.5 | 0.5 |
| 112 | 596.739 | 556.07  | 0.5 | 0.5 |
| 113 | 602.115 | 553.483 | 0.5 | 0.5 |
| 114 | 607.491 | 550.912 | 0.5 | 0.5 |
| 115 | 612.867 | 547.853 | 0.5 | 0.5 |
| 116 | 618.243 | 544.183 | 0.5 | 0.5 |
| 117 | 623.619 | 541.095 | 0.5 | 0.5 |
| 118 | 628.995 | 537.234 | 0.5 | 0.5 |
| 119 | 634.371 | 533.95  | 0.5 | 0.5 |
| 120 | 639.747 | 530.665 | 0.5 | 0.5 |
| 121 | 645.124 | 527.352 | 0.5 | 0.5 |
| 122 | 650.5   | 524.16  | 0.5 | 0.5 |
| 123 | 655.876 | 520.783 | 0.5 | 0.5 |
| 124 | 661.252 | 517.687 | 0.5 | 0.5 |
| 125 | 666.628 | 514.669 | 0.5 | 0.5 |
| 126 | 672.004 | 510.94  | 0.5 | 0.5 |
| 127 | 677.38  | 508.204 | 0.5 | 0.5 |
| 128 | 682.756 | 505.375 | 0.5 | 0.5 |
| 129 | 688.132 | 501.314 | 0.5 | 0.5 |
| 130 | 693.508 | 498.574 | 0.5 | 0.5 |
| 131 | 698.884 | 494.432 | 0.5 | 0.5 |
| 132 | 704.26  | 491.747 | 0.5 | 0.5 |
| 133 | 709.636 | 489.416 | 0.5 | 0.5 |
| 134 | 715.012 | 486.577 | 0.5 | 0.5 |
| 135 | 720.388 | 484,789 | 0.5 | 0.5 |
| 136 | 725.764 | 481.998 | 0.5 | 0.5 |
| 137 | 731.14  | 480.204 | 0.5 | 0.5 |
| 138 | 736.516 | 479.453 | 0.5 | 0.5 |
| 139 | 741.892 | 480.286 | 0.5 | 0.5 |
| 140 | 747.268 | 480.867 | 0.5 | 0.5 |
| 141 | 752.644 | 484.088 | 0.5 | 0.5 |
| 142 | 758.02  | 486.094 | 0.5 | 0.5 |
| 143 | 763.396 | 487.982 | 0.5 | 0.5 |
| 144 | 768.772 | 491.296 | 0.5 | 0.5 |
| 145 | 774.148 | 493.28  | 0.5 | 0.5 |
| 146 | 779.524 | 496.664 | 0.5 | 0.5 |
| 147 | 784.9   | 498,799 | 0.5 | 0.5 |
| 148 | 790 276 | 501 222 | 0.5 | 0.5 |

### Slope Material Assignment

| Material          | From Vertex | To Vertex |
|-------------------|-------------|-----------|
| Detrito con bosco | 1           | 8         |
| Roccia            | 8           | 21        |
| Detrito con bosco | 21          | 29        |
| Roccia            | 29          | 34        |
| Detrito con bosco | 34          | 52        |
| Detrito con prato | 52          | 59        |
| Detrito con bosco | 59          | 62        |
| Roccia            | 62          | 64        |
| Detrito con bosco | 64          | 88        |
| Detrito con prato | 88          | 97        |
| Detrito con bosco | 97          | 136       |
| Depositi in alveo | 136         | 141       |
| Detrito con bosco | 141         | 148       |

### Material Properties

Roccia

Sezione 6.fal5

10/02/2023, 21:41:44

Page 3 of 4

# ROCFALL 5.017

| "Roccia" Properties    |         |              |          |          |          |
|------------------------|---------|--------------|----------|----------|----------|
|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution     | 0.5     | Normal       | 0.04     | 0.12     | 0.12     |
| Tangential Restitution | 0.88    | Normal       | 0.04     | 0.12     | 0.12     |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Detrito con bosco

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.32    | None         |          |          |          |
| Tangential Restitution | 0.82    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Detrito con prato

| Jei ues     | >                          |                                                                      |                                                                                |                                                                                         |
|-------------|----------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| <b>Nean</b> | Distribution               | Std.Dev.                                                             | Rel. Min                                                                       | Rel. Max                                                                                |
| 1.3         | None                       |                                                                      |                                                                                |                                                                                         |
| .8          | None                       |                                                                      |                                                                                |                                                                                         |
| alcula      | ted from Rt                |                                                                      |                                                                                |                                                                                         |
|             | None                       |                                                                      |                                                                                |                                                                                         |
|             | Aean<br>.3<br>.8<br>alcula | Aean Distribution<br>.3 None<br>.8 None<br>alculated from Rt<br>None | Alean Distribution Std.Dev.<br>.3 None<br>.8 None<br>alculated from Rt<br>None | Alean Distribution Std.Dev. Rel. Min<br>.3 None<br>.8 None<br>alculated from Rt<br>None |

### Depositi in alveo

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Ma |
|------------------------|---------|--------------|----------|----------|---------|
| Normal Restitution     | 0.33    | None         |          |          |         |
| Tangential Restitution | 0.85    | None         |          |          |         |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |         |
| Slope Roughness (°)    |         | None         |          |          |         |

### Seeders

| Seed | ler 1                     |        |                |          |          |          |
|------|---------------------------|--------|----------------|----------|----------|----------|
|      | Seeder Properties         |        |                |          |          |          |
|      | Name                      | Seeder | 1              |          |          |          |
|      | Location                  | (37.63 | 22, 980)       |          |          |          |
|      | Rocks to Throw            |        |                |          |          |          |
|      | Number of Rocks           | 1000 0 | Overall        |          |          |          |
|      | Rock Types                | Defaul | t Rock (Sphere | :)       |          |          |
|      | Initial Conditions        |        |                |          |          |          |
|      |                           | Mean   | Distribution   | Std.Dev. | Rel. Min | Rel. Max |
|      | Horizontal Velocity (m/s) | 0.2    | None           |          |          |          |
|      | Vertical Velocity (m/s)   | 0.2    | None           |          |          |          |
|      | Rotational Velocity (°/s) | 0      | None           |          |          |          |
|      | Initial Rotation (°/s)    | 0      | Uniform        |          | 0        | 360      |

### Rock Types

| Default Rock (Sphere)        |        |                |          |          |          |
|------------------------------|--------|----------------|----------|----------|----------|
| Properties                   |        |                |          |          |          |
| Name                         | Defaul | t Rock (Sphere | 2)       |          |          |
| Color                        |        |                |          |          |          |
|                              | Mean   | Distribution   | Std.Dev. | Rel. Min | Rel. Max |
| Mass (kg)                    | 6500   | None           |          |          |          |
| Density (kg/m <sup>3</sup> ) | 2600   | None           |          |          |          |

Sezione 6.fal5

10/02/2023, 21:41:44

Page 4 of 4

### Sezione 6: Altezza massima







Sezione 6: Distanza di arresto



### Sezione 6: Energia cinetica totale (valore medio)



### Sezione 6: Velocità

<section-header><figure>



Sezione 6: Traiettorie

## Sezione 7: Dati di ingresso

| n Seience                                            | Page 1 of 3 |
|------------------------------------------------------|-------------|
| RocFall Analysis Inform                              | ation       |
| Project Summary                                      |             |
| File Name Sezione 7.fal5                             |             |
| File Version 5.017                                   |             |
| Date Created 10/02/2023, 10:41:35                    |             |
| Project Settings                                     |             |
| General Settings:                                    |             |
| Engine Lump Mass                                     |             |
| Units Metric (m, kg, kJ)                             |             |
| Rock Throw Mode Number of rocks controlled by seeder |             |
| Engine Conditions:                                   |             |
| Friction Angle Calculate friction angle from Rt      |             |
| Consider Angular Velocity Yes                        |             |
| Maximum time per rock 5s                             |             |
| Maximum steps per rock 10000                         |             |
| Normal velocity cutoff 0.1m/s                        |             |
| Stopped velocity cutoff 0.1m/s                       |             |
| Maximum timestep 0.01s                               |             |
| Random Number Generation:                            |             |
| Sampling Method Monte-Carlo                          |             |
| Random Seed Pseudo-random seed: 12345234             |             |
|                                                      |             |
| Slope Geometry                                       |             |

Sezione 7.fal5

10/02/2023, 10:41:35

## RDCFALL 5.017

| Vertex | х        | Y       | X Std.Dev. | Y Std.Dev. |
|--------|----------|---------|------------|------------|
| 1      | -5.24539 | 677.354 | 0.5        | 0.5        |
| 2      | 0        | 674.451 | 0.5        | 0.5        |
| 3      | 5.24539  | 669.719 | 0.5        | 0.5        |
| 4      | 10.4908  | 665.75  | 0.5        | 0.5        |
| 5      | 15.7362  | 661.936 | 0.5        | 0.5        |
| 6      | 20.9816  | 660.578 | 0.5        | 0.5        |
| 7      | 26.227   | 656.695 | 0.5        | 0.5        |
| 8      | 31.4724  | 652.913 | 0.5        | 0.5        |
| 9      | 36.7177  | 650.013 | 0.5        | 0.5        |
| 10     | 41.9631  | 646.468 | 0.5        | 0.5        |
| 11     | 47.2085  | 643.018 | 0.5        | 0.5        |
| 12     | 52.4539  | 639.561 | 0.5        | 0.5        |
| 13     | 57.6993  | 636.319 | 0.5        | 0.5        |
| 14     | 62.9447  | 632.996 | 0.5        | 0.5        |
| 15     | 68.1901  | 629.619 | 0.5        | 0.5        |
| 16     | 73.4355  | 625.736 | 0.5        | 0.5        |
| 17     | 78.6809  | 621.733 | 0.5        | 0.5        |
| 18     | 83.9263  | 617.213 | 0.5        | 0.5        |
| 19     | 89.1717  | 612.306 | 0.5        | 0.5        |
| 20     | 94.4171  | 607.111 | 0.5        | 0.5        |
| 21     | 99.6625  | 602.128 | 0.5        | 0.5        |
| 22     | 104.908  | 597.469 | 0.5        | 0.5        |
| 23     | 110.153  | 592.89  | 0.5        | 0.5        |
| 24     | 115.399  | 588.315 | 0.5        | 0.5        |
| 25     | 120.644  | 584.016 | 0.5        | 0.5        |
| 26     | 125.889  | 579 772 | 0.5        | 0.5        |
| 27     | 131,135  | 575.976 | 0.5        | 0.5        |
| 28     | 136.38   | 572.55  | 0.5        | 0.5        |
| 29     | 141.626  | 569.326 | 0.5        | 0.5        |
| 30     | 146.871  | 566.236 | 0.5        | 0.5        |
| 31     | 152.116  | 563.582 | 0.5        | 0.5        |
| 32     | 157.362  | 560.907 | 0.5        | 0.5        |
| 33     | 162.607  | 560.276 | 0.5        | 0.5        |
| 34     | 167.853  | 559.063 | 0.5        | 0.5        |
| 35     | 173.098  | 554.115 | 0.5        | 0.5        |
| 36     | 178.343  | 549.433 | 0.5        | 0.5        |
| 37     | 183.589  | 546.132 | 0.5        | 0.5        |
| 38     | 188.834  | 542.823 | 0.5        | 0.5        |
| 39     | 194.08   | 539.513 | 0.5        | 0.5        |
| 40     | 199.325  | 536.179 | 0.5        | 0.5        |
| 41     | 204.57   | 532.776 | 0.5        | 0.5        |
| 42     | 209.816  | 529.387 | 0.5        | 0.5        |
| 43     | 215.061  | 525.936 | 0.5        | 0.5        |
| 44     | 220.306  | 521.504 | 0.5        | 0.5        |
| 45     | 225.552  | 518.933 | 0.5        | 0.5        |
| 46     | 230.797  | 516.889 | 0.5        | 0.5        |
| 47     | 236.043  | 514.853 | 0.5        | 0.5        |
| 48     | 241.288  | 512.364 | 0.5        | 0.5        |
| 49     | 246.533  | 510.723 | 0.5        | 0.5        |
| 50     | 251.779  | 510     | 0.5        | 0.5        |
| 51     | 257.024  | 508.075 | 0.5        | 0.5        |
| 52     | 262.27   | 508.697 | 0.5        | 0.5        |
| 53     | 267.515  | 510.569 | 0.5        | 0.5        |

### Slope Material Assignment

| Material          | From Vertex | To Vertex |
|-------------------|-------------|-----------|
| Roccia            | 1           | 3         |
| Detrito con bosco | 3           | 29        |
| Detrito con prato | 29          | 36        |
| Detrito con bosco | 36          | 50        |
| Depositi in alveo | 50          | 53        |

### Material Properties

Roccia

Sezione 7.fal5

10/02/2023, 10:41:35

# ROCFALL 5.017

| "Roccia" Properties           |         |              |          |          |          |
|-------------------------------|---------|--------------|----------|----------|----------|
|                               | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution            | 0.5     | None         |          |          |          |
| <b>Tangential Restitution</b> | 0.88    | None         |          |          |          |
| Friction Angle (°)            | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)           |         | None         |          |          |          |

#### Detrito con bosco

| "Detrito con bosco" Pr | opertie | s            |          |          |         |
|------------------------|---------|--------------|----------|----------|---------|
|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Ma |
| Normal Restitution     | 0.32    | None         |          |          |         |
| Tangential Restitution | 0.82    | None         |          |          |         |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |         |
| Slope Roughness (°)    |         | None         |          |          |         |

### Detrito con prato

| "Detrito con prato" Pr | opertie | s            |          |          |         |
|------------------------|---------|--------------|----------|----------|---------|
|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Ma |
| Normal Restitution     | 0.3     | None         |          |          |         |
| Tangential Restitution | 0.8     | None         |          |          |         |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |         |
| Slope Roughness (°)    |         | None         |          |          |         |

#### Depositi in alveo

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.33    | None         |          |          |          |
| Tangential Restitution | 0.85    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

### Seeders

### Seeder 1

| Seeder Properties         |                       |              |          |          |         |  |
|---------------------------|-----------------------|--------------|----------|----------|---------|--|
| Name                      | Seeder 1              |              |          |          |         |  |
| Location                  | (-5.24539, 677.354)   |              |          |          |         |  |
|                           |                       |              |          |          |         |  |
| Rocks to Throw            |                       |              |          |          |         |  |
| Number of Rocks           | 1000 Overall          |              |          |          |         |  |
| Rock Types                | Default Rock (Sphere) |              |          |          |         |  |
|                           |                       |              |          |          |         |  |
| Initial Conditions        |                       |              |          |          |         |  |
|                           | Mean                  | Distribution | Std.Dev. | Rel. Min | Rel. Ma |  |
| Horizontal Velocity (m/s) | 0.2                   | None         |          |          |         |  |
| Vertical Velocity (m/s)   | 0.2                   | None         |          |          |         |  |
| Rotational Velocity (°/s) | 0                     | None         |          |          |         |  |
| Initial Rotation (°/s)    | 0                     | Uniform      |          | 0        | 360     |  |
|                           |                       |              |          |          |         |  |

### Rock Types

| Default Rock (Sphere)                     |                             |                                     |          |          |          |
|-------------------------------------------|-----------------------------|-------------------------------------|----------|----------|----------|
| Properties                                |                             |                                     |          |          |          |
| Name<br>Color                             | Defaul                      | t Rock (Sphere                      | :)       |          |          |
| Mass (kg)<br>Density (kg/m <sup>3</sup> ) | <b>Mean</b><br>9100<br>2600 | <b>Distribution</b><br>None<br>None | Std.Dev. | Rel. Min | Rel. Max |

Sezione 7.fal5

10/02/2023, 10:41:35









Sezione 7: Distanza di arresto


Sezione 7: Energia cinetica totale (valore medio)











# **SEZIONE 8**

# Sezione 8: Dati di ingresso

|                             | RocFall Analysis Information     |  |
|-----------------------------|----------------------------------|--|
| Project Summary             |                                  |  |
| File Name Sezione8.fal5     |                                  |  |
| File Version 5.017          |                                  |  |
| Date Created 10/02/2023, 10 | :51:26                           |  |
| Project Settings            |                                  |  |
| General Settings:           |                                  |  |
| Engine Lump                 | Mass                             |  |
| Units Metr                  | c (m, kg, kJ)                    |  |
| Rock Throw Mode Num         | er of rocks controlled by seeder |  |
| Engine Conditions:          |                                  |  |
| Friction Angle              | Calculate friction angle from Rt |  |
| Consider Angular Velocit    | Yes                              |  |
| Maximum time per rock       | 5s                               |  |
| Maximum steps per rock      | 10000                            |  |
| Stopped velocity cutoff     | 0.1m/s                           |  |
| Maximum timestep            | 0.01s                            |  |
| Random Number Generation:   |                                  |  |
| Sampling Method Mont        | e-Carlo                          |  |
| Bandom Seed Pseur           | o-random seed: 12345234          |  |

Sezione8.fal5

10/02/2023, 10:51:26

| 1 | 1010   | ROCFALL ! | 5.017    |            |            |  |
|---|--------|-----------|----------|------------|------------|--|
| 1 | 51     | sienc     | e        |            |            |  |
|   | Vertex | х         | Y        | X Std.Dev. | Y Std.Dev. |  |
|   | 1      | -5.44916  | 700.136  | 0.5        | 0.5        |  |
|   | 2      | 0         | 696.724  | 0.5        | 0.5        |  |
|   | 3      | 5.44916   | 690.738  | 0.5        | 0.5        |  |
|   | 4      | 10.8983   | 686.118  | 0.5        | 0.5        |  |
|   | 5      | 16.3475   | 682.342  | 0.5        | 0.5        |  |
|   | 6      | 21.7966   | 678.726  | 0.5        | 0.5        |  |
|   | 7      | 27.2458   | 674.062  | 0.5        | 0.5        |  |
|   | 8      | 32,6949   | 669.538  | 0.5        | 0.5        |  |
|   | 9      | 38.1441   | 664.898  | 0.5        | 0.5        |  |
|   | 10     | 43 5932   | 660.94   | 0.5        | 0.5        |  |
|   | 11     | 49.0424   | 655.37   | 0.5        | 0.5        |  |
|   | 12     | 54 4916   | 651 692  | 0.5        | 0.5        |  |
|   | 13     | 59 9407   | 648 311  | 0.5        | 0.5        |  |
|   | 14     | 65 3899   | 643 688  | 0.5        | 0.5        |  |
|   | 15     | 70 839    | 640 854  | 0.5        | 0.5        |  |
|   | 16     | 76 2882   | 635 087  | 0.5        | 0.5        |  |
|   | 17     | 01 7272   | 622 1/15 | 0.5        | 0.5        |  |
|   | 10     | 07 1065   | 620 402  | 0.5        | 0.5        |  |
|   | 10     | 07.1005   | 625 040  | 0.5        | 0.5        |  |
|   | 20     | 00 00 40  | 622.049  | 0.5        | 0.5        |  |
|   | 20     | 103 534   | 616 202  | 0.5        | 0.5        |  |
|   | 21     | 103.534   | 610.302  | 0.5        | 0.5        |  |
|   | 22     | 108.983   | 612.955  | 0.5        | 0.5        |  |
|   | 23     | 114.432   | 609.436  | 0.5        | 0.5        |  |
|   | 24     | 119.881   | 603.383  | 0.5        | 0.5        |  |
|   | 25     | 125.331   | 595.503  | 0.5        | 0.5        |  |
|   | 26     | 130.78    | 589.329  | 0.5        | 0.5        |  |
|   | 27     | 136.229   | 585.067  | 0.5        | 0.5        |  |
|   | 28     | 141.678   | 580.656  | 0.5        | 0.5        |  |
|   | 29     | 147.127   | 576.249  | 0.5        | 0.5        |  |
|   | 30     | 152.576   | 572.956  | 0.5        | 0.5        |  |
|   | 31     | 158.026   | 568.825  | 0.5        | 0.5        |  |
|   | 32     | 163.475   | 565.875  | 0.5        | 0.5        |  |
|   | 33     | 168.924   | 563.022  | 0.5        | 0.5        |  |
|   | 34     | 174.373   | 559.501  | 0.5        | 0.5        |  |
|   | 35     | 179.822   | 557.805  | 0.5        | 0.5        |  |
|   | 36     | 185.271   | 554.393  | 0.5        | 0.5        |  |
|   | 37     | 190.72    | 552.569  | 0.5        | 0.5        |  |
|   | 38     | 196.17    | 550.6    | 0.5        | 0.5        |  |
|   | 39     | 201.619   | 544.933  | 0.5        | 0.5        |  |
|   | 40     | 207.068   | 541.419  | 0.5        | 0.5        |  |
|   | 41     | 212.517   | 535.39   | 0.5        | 0.5        |  |
|   | 42     | 217.966   | 532.767  | 0.5        | 0.5        |  |
|   | 43     | 223.415   | 530.108  | 0.5        | 0.5        |  |
|   | 44     | 228.865   | 521.707  | 0.5        | 0.5        |  |
|   | 45     | 234.314   | 518.534  | 0.5        | 0.5        |  |
|   | 46     | 239.763   | 513.451  | 0.5        | 0.5        |  |
|   | 47     | 245.212   | 511.142  | 0.5        | 0.5        |  |
|   | 48     | 250.661   | 509.901  | 0.5        | 0.5        |  |
|   | 49     | 256.11    | 509.312  | 0.5        | 0.5        |  |
|   | 50     | 261.559   | 509.931  | 0.5        | 0.5        |  |
|   | 51     | 267.009   | 512.14   | 0.5        | 0.5        |  |
|   | 52     | 272.458   | 513.021  | 0.5        | 0.5        |  |

## Slope Material Assignment

| Material          | From Vertex | To Vertex |
|-------------------|-------------|-----------|
| roccia            | 1           | 8         |
| Detrito con bosco | 8           | 20        |
| roccia            | 20          | 26        |
| Detrito con bosco | 26          | 31        |
| Detrito con prato | 31          | 38        |
| Detrito con bosco | 38          | 40        |
| roccia            | 40          | 41        |
| Detrito con bosco | 41          | 43        |
| roccia            | 43          | 45        |
| Depositi in alveo | 45          | 52        |

Sezione8.fal5

10/02/2023, 10:51:26

Page 2 of 3

# ROCFALL 5.017

Material Properties

## roccia

| "roccia" Properties    |         |              |          |          |          |
|------------------------|---------|--------------|----------|----------|----------|
|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution     | 0.5     | None         |          |          |          |
| Tangential Restitution | 0.88    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

#### Detrito con bosco

| "Detrito con bosco" Pr        | opertie | s            |          |          |          |
|-------------------------------|---------|--------------|----------|----------|----------|
|                               | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution            | 0.32    | None         |          |          |          |
| <b>Tangential Restitution</b> | 0.82    | None         |          |          |          |
| Friction Angle (°)            | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)           |         | None         |          |          |          |

#### Detrito con prato

|                        | Mean    | Distribution | Std.Dev. | Rel. Min | Rel. Max |
|------------------------|---------|--------------|----------|----------|----------|
| Normal Restitution     | 0.3     | None         |          |          |          |
| Tangential Restitution | 0.98    | None         |          |          |          |
| Friction Angle (°)     | Calcula | ated from Rt |          |          |          |
| Slope Roughness (°)    |         | None         |          |          |          |

#### Depositi in alveo

| "Depositi in alveo" Pro       | operties | <b>i</b>     |          |          |          |
|-------------------------------|----------|--------------|----------|----------|----------|
|                               | Mean     | Distribution | Std.Dev. | Rel. Min | Rel. Max |
| Normal Restitution            | 0.33     | None         |          |          |          |
| <b>Tangential Restitution</b> | 0.85     | None         |          |          |          |
| Friction Angle (°)            | Calcula  | ated from Rt |          |          |          |
| Slope Roughness (°)           |          | None         |          |          |          |
|                               |          |              |          |          |          |

## Seeders

| Seed | ler 1                     |         |                       |          |          |          |
|------|---------------------------|---------|-----------------------|----------|----------|----------|
|      | Seeder Properties         |         |                       |          |          |          |
|      | Name                      | Seeder  | r 1                   |          |          |          |
|      | Location                  | (0, 696 | 5.724)                |          |          |          |
|      |                           |         |                       |          |          |          |
|      | Rocks to Throw            |         |                       |          |          |          |
|      | Number of Rocks           | 1000 0  | 1000 Overall          |          |          |          |
|      | Rock Types                | Defaul  | Default Rock (Sphere) |          |          |          |
|      | Initial Conditions        |         |                       |          |          |          |
|      |                           | Mean    | Distribution          | Std.Dev. | Rel. Min | Rel. Max |
|      | Horizontal Velocity (m/s) | 0.2     | None                  |          |          |          |
|      | Vertical Velocity (m/s)   | 0.2     | None                  |          |          |          |
|      | Rotational Velocity (°/s) | 0       | None                  |          |          |          |
|      | Initial Rotation (°/s)    | 0       | Uniform               |          | 0        | 360      |
|      |                           |         |                       |          |          |          |

#### Rock Types

 Default Rock (Sphere)

 Properties
 Default Rock (Sphere)

 Color
 Image: Color

 Mass (kg)
 Distribution Std.Dev. Rel. Min Rel. Max

 Mass (kg/m<sup>3</sup>)
 9100

 Density (kg/m<sup>3</sup>)
 2600

Sezione8.fal5

10/02/2023, 10:51:26

Page 3 of 3









Sezione 8: Distanza di arresto



Sezione 8: Energia cinetica totale (valore medio)











## 11. ALLEGATO 2: BIBLIOGRAFIA

- BUWAL (Bundesamt f
  ür Umwelt, Wald und Landschaft): Methoden zur Analyseund Bewertungvon Naturgefahr (Metodi di analisi e valutazione di pericoli naturali) - 1998/1999.
- Castelli, M.; Torsello, G.; Vallero, G.; Preliminary Modeling of Rockfall Runout: Definition of the Input Parameters for the QGIS Plugin QPROTO. Geosciences 2021, 11, 88.
- HEINIMANN, H.R., HOLTENSTEIN, K., KIENHOLZ, H., KRUMMENHACHER, B. & MANI, P. "Methoden zur analyse und bewertung von naturgefahren" Umwelt-Materialien 85, Naturgefahren. Bern: BUWAL, pp. 248 (1998).
- Provincia Autonoma di Bolzano: Direttive per la redazione dei piani delle zone di pericolo (PZP) e per la classificazione del rischio specifico (CRS) – 2007.
- QGIS Python Plugins: <u>https://plugins.qgis.org/plugins/qproto/</u>.
- Regione Lombardia: Delibera di Giunta Regionale 30 novembre 2011 n. IX/2616: "Aggiornamento dei 'Criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio, in attuazione dell'art. 57, comma 1, della l.r. 11 marzo 2005, n. 12", approvati con d.g.r. 22 dicembre 2005, n. 8/1566 e successivamente modificati con d.g.r. 28 maggio 2008, n. 8/7374" e smi.
- Torsello, G.; La modellazione del fenomeno di caduta massi a piccola scala: valutazione dei parametri necessari per analisi speditive. Politecnico di Torino -Corso di Laurea Magistrale in Ingegneria Edile - Tesi di Laurea Magistrale. Aprile 2019.